• ResearchGate
  • Zenodo
  • Twitter
  • LinkedIn
  • Instagram
  • Facebook
  • Youtube
  • Rss
Human-Computer Interaction & Visual Analyitics Reasearch Group (vis) at Darmstadt University of Applied Sciences (h_da)
  • Home
  • Research
    • Research Fields
    • Application Scenarios
    • Projects
    • Publications
  • Publications
  • Technologies
    • Scitics Trend Analytics Technology
    • SmartEval Evaluation Technology
    • Services
  • Teaching
    • Lectures
    • Practical Courses
    • Bachelor & Master Theses
  • Team
    • Offerings
    • Contact
  • Network
  • Search
  • Menu Menu
You are here: Home1 / News2 / Event3 / Two Paper Accepted at 24rd Internation Conference Information Visualization...

Two Paper Accepted at 24rd Internation Conference Information Visualization (iV 2020)

04/08/2020/in Allgemein, Event, Publication, Research, Scitics/by Dirk Burkhardt

We are very glad to be accepted for presenting our papers titled “Comparison of Full-text Articles and Abstracts for Visual Trend Analytics through Natural Language Processing” and “An Industry 4.0-Ready Visual Analytics Model for Context-Aware Diagnosis in Smart Manufacturing” at the high-class conference Information Visualisation Conference (iV 2020). Due to Corona epidemic the conference is hold virtually. The iV 2020 is an international conference that aims to provide a foundation for integrating the human-centered, technological and strategic aspects of information visualization to promote international exchange, cooperation and development.

Paper #1: Comparison of Full-text Articles and Abstracts for Visual Trend Analytics through Natural Language Processing

Abstract:
Scientific publications are an essential resource for detecting emerging trends and innovations in a very early stage, by far earlier than patents may allow. Thereby Visual Analytics systems enable a deep analysis by applying commonly unsupervised machine learning methods and investigating a mass amount of data. A main question from the Visual Analytics viewpoint in this context is, do abstracts of scientific publications provide a similar analysis capability compared to their corresponding full-texts? This would allow to extract a mass amount of text documents in a much faster manner. We compare in this paper the topic extraction methods LSI and LDA by using full text articles and their corresponding abstracts to obtain which method and which data are better suited for a Visual Analytics system for Technology and Corporate Foresight. Based on a easy replicable natural language processing approach, we further investigate the impact of lemmatization for LDA and LSI. The comparison will be performed qualitative and quantitative to gather both, the human perception in visual systems and coherence values. Based on an application scenario a visual trend analytics system will further illustrate the outcomes.

Link to paper/fulltext: DOI: 10.1109/10.1109/IV51561.2020.00065

More information about the technology: Scitics for Visual Trend Analytics

Paper#2: An Industry 4.0-Ready Visual Analytics Model for Context-Aware Diagnosis in Smart Manufacturing

Abstract:
The integrated cyber-physical systems in Smart Manufacturing generate continuously vast amount of data. These complex data are difficult to assess and gather knowledge about the data. Tasks like fault detection and diagnosis are therewith difficult to solve. Visual Analytics mitigates complexity through the combined use of algorithms and visualization methods that allow to perceive information in a more accurate way. Thereby, reasoning relies more and more on the given situation within a smart manufacturing environment, namely the context. Current general Visual Analytics approaches only provide a vague definition of context. We introduce in this paper a model that specifies the context in Visual Analytics for Smart Manufacturing. Additionally, our model bridges the latest advances in research on Smart Manufacturing and Visual Analytics. We combine and summarize methodologies, algorithms and specifications of both vital research fields with our previous findings and fuse them together. As a result, we propose our novel industry 4.0-ready Visual Analytics model for context-aware diagnosis in Smart Manufacturing.

Link to paper/fulltext: DOI: 10.1109/10.1109/IV51561.2020.00064

Tags: Business Analytics, Cyber-Physical Systems, Industry 4.0, iV, iV2020, Smart Manufacturing, Text Mining, Trend Analysis, Visual Analytics, Visual Trend Analysis
Share this entry
  • Share on Facebook
  • Share on Twitter
  • Share on WhatsApp
  • Share on Pinterest
  • Share on LinkedIn
  • Share on Reddit
  • Share by Mail
https://vis.h-da.de/wp-content/uploads/2020/05/IV2020_neu.jpg 1116 1920 Dirk Burkhardt https://vis.h-da.de/wp-content/uploads/2019/10/LG0_vis_RG_light_Blue_huge_cutted-300x145.png Dirk Burkhardt2020-08-04 08:23:082021-06-08 10:55:17Two Paper Accepted at 24rd Internation Conference Information Visualization (iV 2020)
You might also like
Logo OpenRheinMain Conference 2019 Insight on Visual Text Analytics for Technology and Innovation Management at OpenRheinMain Conference
Sibgha Nazir defended her Master Thesis on Visual Analytics on Enterprise Reports for Investment and Strategical Analysis
Guest Editing of Special Issue in Big Data Research Journal
Call for Articles to Special Issue in Journal of Electronics
Advisory Board of the EUt+ Academic Press
Elected in the Board of Publication Chairs @ International Information Visualisation Conference (iV2020)

Categories

  • Allgemein (37)
  • Business (6)
    • Conference (4)
    • Workshop (1)
  • News (28)
    • Action (3)
    • Deadline (1)
    • Event (12)
  • Personal (1)
  • Research (48)
    • Action (7)
    • Book (1)
    • Conference (10)
    • EUT+ (1)
    • h_da (10)
    • Journal (4)
    • Project (8)
    • Prototype (2)
    • Publication (20)
    • Workshop (4)
  • Talk (3)
  • Teaching (29)
    • Demo (3)
    • h_da (15)
    • Lecture (6)
    • Practical Experience (1)
    • Seminar (1)
    • Thesis (10)
    • TU Darmstadt (5)
  • Technology (23)
    • Scitics (18)
    • SmartEval (1)

Tags

Artificial Intelligence (8) Big data Analytics (6) Business Analytics (17) Business Information Systems (5) Business Management (5) CERC (5) Collaboration (16) Conference (7) Data Analysis (9) Data Analytics (6) Data Mining (9) Data Science (5) Decision Making (6) Digital Libraries (7) eGovernance (6) eGovernment (9) Europe (7) Human-Computer Interaction (5) h_da (6) Information Visualization (19) Innovation Management (13) Intelligent Visualization (6) iV (8) Machine Learning (7) Master Thesis (5) Multimedia (5) Research (24) Research Networks (9) Research Project (9) Scientific Data (5) Simulation (5) Teaching (4) Technology Management (9) Text Mining (13) Thesis (5) Trend Analysis (11) Trend Analytics (8) User-Centered Design (18) Visual Analytics (46) Visual Computing (6) Visual Interfaces (6) Visualization (9) Visual Trend Analysis (30) Visual Trend Analytics (22) Workshop (4)

History

Recent News

  • Shahrukh Badar defended his Master Thesis on Process Mining for Workflow-Driven Assistance in Visual Trend Analytics27/04/2022 - 9:00
  • Sibgha Nazir defended her Master Thesis on Visual Analytics on Enterprise Reports for Investment and Strategical Analysis29/03/2022 - 8:31
  • Call for Articles to Special Issue in Journal of Electronics09/03/2022 - 9:37

About | Imprint | Data Privacy

© 2022 Research Group on Human-Computer Interaction & Visual Analytics (vis) – Darmstadt University of Applied Sciences (h_da)

h_da is Partner of European University of TechnologyTwo Papers Accepted at 6th Collaborative European Research Conference (CERC...
Scroll to top

This website uses cookies to enhance its ease of use. Click "Learn More" to get detailed descriptions and further options!

OKLearn More

Cookie and Privacy Settings



How we use cookies

We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.

Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.

We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.

We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.

Other external services

We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.

Google Webfont Settings:

Google Map Settings:

Google reCaptcha Settings:

Vimeo and Youtube video embeds:

Privacy Policy

You can read about our cookies and privacy settings in detail on our Privacy Policy Page.

Datenschutzerklärung
Accept settingsHide notification only