Publikationen
2014 | |
6. | Kawa Nazemi Adaptive Semantics Visualization Promotionsarbeit Technische Universität Darmstadt, 2014, (Reprint by Eugraphics Association (EG)). Abstract | Links | BibTeX | Schlagwörter: Adaptive Information Visualization, Adaptive User Interfaces, Adaptive Visualization, Computer Based Learning, Data Analytics, E-Learning, Exploratory learning, Human Factors, Human-centered user interfaces, Human-computer interaction (HCI), Information visualization, Intelligent Systems, Interaction analysis, Interaction Design, Ontology visualization, personalization, Policy modeling, reference model, Semantic data modeling, Semantic visualization, Semantic web, Semantics visualization, User behavior, User Interactions, User Interface, User modeling, User-centered design, Visual analytics @phdthesis{Nazemi2014f, Human access to the increasing amount of information and data plays an essential role for the professional level and also for everyday life. While information visualization has developed new and remarkable ways for visualizing data and enabling the exploration process, adaptive systems focus on users' behavior to tailor information for supporting the information acquisition process. Recent research on adaptive visualization shows promising ways of synthesizing these two complementary approaches and make use of the surpluses of both disciplines. The emerged methods and systems aim to increase the performance, acceptance, and user experience of graphical data representations for a broad range of users. Although the evaluation results of the recently proposed systems are promising, some important aspects of information visualization are not considered in the adaptation process. The visual adaptation is commonly limited to change either visual parameters or replace visualizations entirely. Further, no existing approach adapts the visualization based on data and user characteristics. Other limitations of existing approaches include the fact that the visualizations require training by experts in the field. In this thesis, we introduce a novel model for adaptive visualization. In contrast to existing approaches, we have focused our investigation on the potentials of information visualization for adaptation. Our reference model for visual adaptation not only considers the entire transformation, from data to visual representation, but also enhances it to meet the requirements for visual adaptation. Our model adapts different visual layers that were identified based on various models and studies on human visual perception and information processing. In its adaptation process, our conceptual model considers the impact of both data and user on visualization adaptation. We investigate different approaches and models and their effects on system adaptation to gather implicit information about users and their behavior. These are than transformed and applied to affect the visual representation and model human interaction behavior with visualizations and data to achieve a more appropriate visual adaptation. Our enhanced user model further makes use of the semantic hierarchy to enable a domain-independent adaptation. To face the problem of a system that requires to be trained by experts, we introduce the canonical user model that models the average usage behavior with the visualization environment. Our approach learns from the behavior of the average user to adapt the different visual layers and transformation steps. This approach is further enhanced with similarity and deviation analysis for individual users to determine similar behavior on an individual level and identify differing behavior from the canonical model. Users with similar behavior get similar visualization and data recommendations, while behavioral anomalies lead to a lower level of adaptation. Our model includes a set of various visual layouts that can be used to compose a multi-visualization interface, a sort of "visualization cockpit". This model facilitates various visual layouts to provide different perspectives and enhance the ability to solve difficult and exploratory search challenges. Data from different data-sources can be visualized and compared in a visual manner. These different visual perspectives on data can be chosen by users or can be automatically selected by the system. This thesis further introduces the implementation of our model that includes additional approaches for an efficient adaptation of visualizations as proof of feasibility. We further conduct a comprehensive user study that aims to prove the benefits of our model and underscore limitations for future work. The user study with overall 53 participants focuses with its four conditions on our enhanced reference model to evaluate the adaptation effects of the different visual layers. |
5. | Kawa Nazemi; Wilhelm Retz; Jörn Kohlhammer; Arjan Kuijper User Similarity and Deviation Analysis for Adaptive Visualizations Konferenzbeitrag In: Sakae Yamamoto (Hrsg.): International Conference on Human Interface and the Management of Information (HMI 2014). Human Interface and the Management of Information. Information and Knowledge Design and Evaluation., S. 64–75, Springer International Publishing, Cham, 2014, ISBN: 978-3-319-07731-7. Abstract | Links | BibTeX | Schlagwörter: Adaptive Information Visualization, Adaptive User Interfaces, Adaptive Visualization, Data Analytics, reference model, Semantic visualization, Semantics visualization, User behavior, User Interactions, User Interface, User modeling, User-centered design, Visual analytics @inproceedings{Nazemi2014e, Adaptive visualizations support users in information acquisition and exploration and therewith in human access of data. Their adaptation effect is often based on approaches that require the training by an expert. Further the effects often aims to support just the individual aptitudes. This paper introduces an approach for modeling a canonical user that makes the predefined training-files dispensable and enables an adaptation of visualizations for the majority of users. With the introduced user deviation algorithm, the behavior of individuals can be compared to the average user behavior represented in the canonical user model to identify behavioral anomalies. The further introduced similarity measurements allow to cluster similar deviated behavioral patterns as groups and provide them effective visual adaptations. |
4. | Kawa Nazemi; Dirk Burkhardt; Reimond Retz; Arjan Kuijper; Jörn Kohlhammer Adaptive Visualization of Linked-Data Konferenzbeitrag In: George Bebis; Richard Boyle; Bahram Parvin; Darko Koracin; Ryan McMahan; Jason Jerald; Hui Zhang; Steven M Drucker; Chandra Kambhamettu; Maha El Choubassi; Zhigang Deng; Mark Carlson (Hrsg.): Proceedings of International Symposium on Visual Computing (ISVC 2014). Advances in Visual Computing., S. 872–883, Springer International Publishing, Cham, 2014, ISBN: 978-3-319-14364-4. Abstract | Links | BibTeX | Schlagwörter: Adaptive Information Visualization, Adaptive User Interfaces, Adaptive Visualization, Data Analytics, Human Factors, Human-centered user interfaces, Human-computer interaction (HCI), Information visualization, Intelligent Systems, Interaction analysis, Interaction Design, personalization, reference model, Semantic visualization, Semantic web, User behavior, User modeling, User-centered design, Visual analytics @inproceedings{Nazemi2014b, Adaptive visualizations reduces the required cognitive effort to comprehend interactive visual pictures and amplify cognition. Although the research on adaptive visualizations grew in the last years, the existing approaches do not consider the transformation pipeline from data to visual representation for a more efficient and effective adaptation. Further todays systems commonly require an initial training by experts from the field and are limited to adaptation based either on user behavior or on data characteristics. A combination of both is not proposed to our knowledge. This paper introduces an enhanced instantiation of our previously proposed model that combines both: involving different influencing factors for and adapting various levels of visual peculiarities, on content, visual layout, visual presentation, and visual interface. Based on data type and users’ behavior, our system adapts a set of applicable visualization types. Moreover, retinal variables of each visualization type are adapted to meet individual or canonical requirements on both, data types and users’ behavior. Our system does not require an initial expert modeling. |
2011 | |
3. | Matthias Breyer; Kawa Nazemi; Christian Stab; Dirk Burkhardt; Arjan Kuijper A Comprehensive Reference Model for Personalized Recommender Systems Buchkapitel In: M J Smith; G Salvendy (Hrsg.): Human Interface and the Management of Information. Interacting with Information: Symposium on Human Interface 2011, Orlando, FL, USA., S. 528–537, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, ISBN: 978-3-642-21793-7. Abstract | Links | BibTeX | Schlagwörter: personalization, Recommender systems, reference model @inbook{Breyer2011, Existing reference models for recommender systems are on an abstract level of detail or do not point out the processes and transitions of recommendation systems. However, this information is relevant for developers to design or improve recommendation systems. Even so, users need some background information of the calculation process to understand the process and accept or configure these systems proper. In this paper we present a comprehensive reference model for recommender systems which conjuncts the recommendation processes on an adequate level of detail. To achieve this, the processes of content-based and collaboration-based systems are merged and extended by the transitions and phases of hybrid systems. Furthermore, the algorithms which can be applied in the phases of the model are examined to identify the data flow between these phases. With our model those information of the recommendation calculation process can be identified, which encourages the traceability and thus the acceptance of recommendations. |
2. | Kawa Nazemi; Dirk Burkhardt; Alexander Praetorius; Matthias Breyer; Arjan Kuijper Adapting User Interfaces by Analyzing Data Characteristics for Determining Adequate Visualizations Konferenzbeitrag In: Masaaki Kurosu (Hrsg.): Human Centered Design, S. 566–575, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, ISBN: 978-3-642-21753-1. Abstract | Links | BibTeX | Schlagwörter: Adaptive Information Visualization, Adaptive User Interfaces, Adaptive Visualization, Data Analytics, Human Factors, Human-computer interaction (HCI), Information visualization, Intelligent Systems, personalization, reference model, Semantic visualization, Semantic web, User behavior @inproceedings{Nazemi2011c, Today the information visualization takes in an important position, because it is required in nearly every context where large databases have to be visualized. For this challenge new approaches are needed to allow the user an adequate access to these data. Static visualizations are only able to show the data without any support to the users, which is the reason for the accomplished researches to adaptive user-interfaces, in particular for adaptive visualizations. By these approaches the visualizations were adapted to the users' behavior, so that graphical primitives were change to support a user e.g. by highlighting user-specific entities, which seems relevant for a user. This approach is commonly used, but it is limited on changes for just a single visualization. Modern heterogeneous data providing different kinds of aspects, which modern visualizations try to regard, but therefore a user often needs more than a single visualization for making an information retrieval. In this paper we describe a concept for adapting the user-interface by selecting visualizations in dependence to automatically generated data characteristics. So visualizations will be chosen, which are fitting well to the generated characteristics. Finally the user gets an aquatically arranged set of visualizations as initial point of his interaction through the data. |
2008 | |
1. | Christoph Hornung; Andrina Granić; Maja Ćukušić; Kawa Nazemi eKnowledge Repositories in eLearning 2.0: UNITE - a European-Wide Network of Schools Buchkapitel In: F Li; J Zhao; T K Shih; R Lau; Q Li; D McLeod (Hrsg.): Advances in Web Based Learning - ICWL 2008: 7th International Conference, Jinhua, China, August 20-22, 2008. Proceedings, S. 99–110, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, ISBN: 978-3-540-85033-5. Abstract | Links | BibTeX | Schlagwörter: Computer Based Learning, Intelligent Systems, Intelligent tutoring systems, reference model, Vocational training @inbook{Hornung2008, The upcoming Web 2.0 technologies change the aspects of eLearning fundamentally. The traditional paradigm of classroom teaching and homework learning will develop further towards sharing experiences and knowledge in word-wide social communities. Moreover, knowledge capturing in ambient environments gains more and more importance. These aspects characterize the so-called eLearning 2.0. This paper describes a prototype of an eLearning 2.0 system covering the different aspects such as platform, pedagogy and scenarios. The concepts presented here have been applied in the EU-project UNITE. The implementation of this system in the setting of a European network of fourteen schools is presented as an iterative four stage process, covering scenario planning and implementation, validation in addition to platform and process improvement. Achieved intermediate results from the first iteration of the implementation process are discussed and future work is presented. |