We are very glad to be accepted for presenting our papers titled “Comparison of Full-text Articles and Abstracts for Visual Trend Analytics through Natural Language Processing” and “An Industry 4.0-Ready Visual Analytics Model for Context-Aware Diagnosis in Smart Manufacturing” at the high-class conference Information Visualisation Conference (iV 2020). Due to Corona epidemic the conference is hold virtually. The iV 2020 is an international conference that aims to provide a foundation for integrating the human-centered, technological and strategic aspects of information visualization to promote international exchange, cooperation and development.
Paper #1: Comparison of Full-text Articles and Abstracts for Visual Trend Analytics through Natural Language Processing
Abstract:
Scientific publications are an essential resource for detecting emerging trends and innovations in a very early stage, by far earlier than patents may allow. Thereby Visual Analytics systems enable a deep analysis by applying commonly unsupervised machine learning methods and investigating a mass amount of data. A main question from the Visual Analytics viewpoint in this context is, do abstracts of scientific publications provide a similar analysis capability compared to their corresponding full-texts? This would allow to extract a mass amount of text documents in a much faster manner. We compare in this paper the topic extraction methods LSI and LDA by using full text articles and their corresponding abstracts to obtain which method and which data are better suited for a Visual Analytics system for Technology and Corporate Foresight. Based on a easy replicable natural language processing approach, we further investigate the impact of lemmatization for LDA and LSI. The comparison will be performed qualitative and quantitative to gather both, the human perception in visual systems and coherence values. Based on an application scenario a visual trend analytics system will further illustrate the outcomes.
Link to paper/fulltext: DOI: 10.1109/10.1109/IV51561.2020.00065
More information about the technology: Scitics for Visual Trend Analytics
Paper#2: An Industry 4.0-Ready Visual Analytics Model for Context-Aware Diagnosis in Smart Manufacturing
Abstract:
The integrated cyber-physical systems in Smart Manufacturing generate continuously vast amount of data. These complex data are difficult to assess and gather knowledge about the data. Tasks like fault detection and diagnosis are therewith difficult to solve. Visual Analytics mitigates complexity through the combined use of algorithms and visualization methods that allow to perceive information in a more accurate way. Thereby, reasoning relies more and more on the given situation within a smart manufacturing environment, namely the context. Current general Visual Analytics approaches only provide a vague definition of context. We introduce in this paper a model that specifies the context in Visual Analytics for Smart Manufacturing. Additionally, our model bridges the latest advances in research on Smart Manufacturing and Visual Analytics. We combine and summarize methodologies, algorithms and specifications of both vital research fields with our previous findings and fuse them together. As a result, we propose our novel industry 4.0-ready Visual Analytics model for context-aware diagnosis in Smart Manufacturing.
Link to paper/fulltext: DOI: 10.1109/10.1109/IV51561.2020.00064