Publications
2016 | |
6. | Kawa Nazemi; Martin Steiger; Dirk Burkhardt; Jörn Kohlhammer Information Visualization and Policy Modeling Book Chapter In: Big Data: Concepts, Methodologies, Tools, and Applications, Information Science Reference, IGI Global, Hershey PA, USA, 2016, ISBN: 978-1-466-69840-6, (reprint). Abstract | Links | BibTeX | Tags: Human-centered user interfaces, Information visualization, Semantic data modeling, Semantic visualization, User-centered design, Visual analytics @inbook{Nazemi2016, Policy design requires the investigation of various data in several design steps for making the right decisions, validating, or monitoring the political environment. The increasing amount of data is challenging for the stakeholders in this domain. One promising way to access the “big data” is by abstracted visual patterns and pictures, as proposed by information visualization. This chapter introduces the main idea of information visualization in policy modeling. First abstracted steps of policy design are introduced that enable the identification of information visualization in the entire policy life-cycle. Thereafter, the foundations of information visualization are introduced based on an established reference model. The authors aim to amplify the incorporation of information visualization in the entire policy design process. Therefore, the aspects of data and human interaction are introduced, too. The foundation leads to description of a conceptual design for social data visualization, and the aspect of semantics plays an important role. |
2014 | |
5. | Kawa Nazemi Adaptive Semantics Visualization PhD Thesis Technische Universität Darmstadt, 2014, (Reprint by Eugraphics Association (EG)). Abstract | Links | BibTeX | Tags: Adaptive Information Visualization, Adaptive User Interfaces, Adaptive Visualization, Computer Based Learning, Data Analytics, E-Learning, Exploratory learning, Human Factors, Human-centered user interfaces, Human-computer interaction (HCI), Information visualization, Intelligent Systems, Interaction analysis, Interaction Design, Ontology visualization, personalization, Policy modeling, reference model, Semantic data modeling, Semantic visualization, Semantic web, Semantics visualization, User behavior, User Interactions, User Interface, User modeling, User-centered design, Visual analytics @phdthesis{Nazemi2014f, Human access to the increasing amount of information and data plays an essential role for the professional level and also for everyday life. While information visualization has developed new and remarkable ways for visualizing data and enabling the exploration process, adaptive systems focus on users' behavior to tailor information for supporting the information acquisition process. Recent research on adaptive visualization shows promising ways of synthesizing these two complementary approaches and make use of the surpluses of both disciplines. The emerged methods and systems aim to increase the performance, acceptance, and user experience of graphical data representations for a broad range of users. Although the evaluation results of the recently proposed systems are promising, some important aspects of information visualization are not considered in the adaptation process. The visual adaptation is commonly limited to change either visual parameters or replace visualizations entirely. Further, no existing approach adapts the visualization based on data and user characteristics. Other limitations of existing approaches include the fact that the visualizations require training by experts in the field. In this thesis, we introduce a novel model for adaptive visualization. In contrast to existing approaches, we have focused our investigation on the potentials of information visualization for adaptation. Our reference model for visual adaptation not only considers the entire transformation, from data to visual representation, but also enhances it to meet the requirements for visual adaptation. Our model adapts different visual layers that were identified based on various models and studies on human visual perception and information processing. In its adaptation process, our conceptual model considers the impact of both data and user on visualization adaptation. We investigate different approaches and models and their effects on system adaptation to gather implicit information about users and their behavior. These are than transformed and applied to affect the visual representation and model human interaction behavior with visualizations and data to achieve a more appropriate visual adaptation. Our enhanced user model further makes use of the semantic hierarchy to enable a domain-independent adaptation. To face the problem of a system that requires to be trained by experts, we introduce the canonical user model that models the average usage behavior with the visualization environment. Our approach learns from the behavior of the average user to adapt the different visual layers and transformation steps. This approach is further enhanced with similarity and deviation analysis for individual users to determine similar behavior on an individual level and identify differing behavior from the canonical model. Users with similar behavior get similar visualization and data recommendations, while behavioral anomalies lead to a lower level of adaptation. Our model includes a set of various visual layouts that can be used to compose a multi-visualization interface, a sort of "visualization cockpit". This model facilitates various visual layouts to provide different perspectives and enhance the ability to solve difficult and exploratory search challenges. Data from different data-sources can be visualized and compared in a visual manner. These different visual perspectives on data can be chosen by users or can be automatically selected by the system. This thesis further introduces the implementation of our model that includes additional approaches for an efficient adaptation of visualizations as proof of feasibility. We further conduct a comprehensive user study that aims to prove the benefits of our model and underscore limitations for future work. The user study with overall 53 participants focuses with its four conditions on our enhanced reference model to evaluate the adaptation effects of the different visual layers. |
4. | Kawa Nazemi Adaptive Semantics Visualization PhD Thesis Technische Universität Darmstadt, 2014, (Department of Computer Science. Supervised by Dieter W. Fellner.). Abstract | Links | BibTeX | Tags: Adaptive Information Visualization, Adaptive User Interfaces, Computer Based Learning, Data Analytics, eGovernance, Exploratory learning, Human Factors, Human-centered user interfaces, Human-computer interaction (HCI), Information visualization, Intelligent Systems, Interaction Design, Ontology visualization, personalization, Policy modeling, Semantic data modeling, Semantic visualization, Semantic web, User behavior, User Interactions, User Interface, User modeling, User-centered design, Visual analytics @phdthesis{Nazemi2014g, Human access to the increasing amount of information and data plays an essential role for the professional level and also for everyday life. While information visualization has developed new and remarkable ways for visualizing data and enabling the exploration process, adaptive systems focus on users’ behavior to tailor information for supporting the information acquisition process. Recent research on adaptive visualization shows promising ways of synthesizing these two complementary approaches and make use of the surpluses of both disciplines. The emerged methods and systems aim to increase the performance, acceptance, and user experience of graphical data representations for a broad range of users. Although the evaluation results of the recently proposed systems are promising, some important aspects of information visualization are not considered in the adaptation process. The visual adaptation is commonly limited to change either visual parameters or replace visualizations entirely. Further, no existing approach adapts the visualization based on data and user characteristics. Other limitations of existing approaches include the fact that the visualizations require training by experts in the field. In this thesis, we introduce a novel model for adaptive visualization. In contrast to existing approaches, we have focused our investigation on the potentials of information visualization for adaptation. Our reference model for visual adaptation not only considers the entire transformation, from data to visual representation, but also enhances it to meet the requirements for visual adaptation. Our model adapts different visual layers that were identified based on various models and studies on human visual perception and information processing. In its adaptation process, our conceptual model considers the impact of both data and user on visualization adaptation. We investigate different approaches and models and their effects on system adaptation to gather implicit information about users and their behavior. These are than transformed and applied to affect the visual representation and model human interaction behavior with visualizations and data to achieve a more appropriate visual adaptation. Our enhanced user model further makes use of the semantic hierarchy to enable a domain-independent adaptation. To face the problem of a system that requires to be trained by experts, we introduce the canonical user model that models the average usage behavior with the visualization environment. Our approach learns from the behavior of the average user to adapt the different visual layers and transformation steps. This approach is further enhanced with similarity and deviation analysis for individual users to determine similar behavior on an individual level and identify differing behavior from the canonical model. Users with similar behavior get similar visualization and data recommendations, while behavioral anomalies lead to a lower level of adaptation. Our model includes a set of various visual layouts that can be used to compose a multi-visualization interface, a sort of "‘visualization cockpit"’. This model facilitates various visual layouts to provide different perspectives and enhance the ability to solve difficult and exploratory search challenges. Data from different data-sources can be visualized and compared in a visual manner. These different visual perspectives on data can be chosen by users or can be automatically selected by the system. This thesis further introduces the implementation of our model that includes additional approaches for an efficient adaptation of visualizations as proof of feasibility. We further conduct a comprehensive user study that aims to prove the benefits of our model and underscore limitations for future work. The user study with overall 53 participants focuses with its four conditions on our enhanced reference model to evaluate the adaptation effects of the different visual layers. |
2012 | |
3. | Jörn Kohlhammer; Kawa Nazemi; Tobias Ruppert; Dirk Burkhardt Toward Visualization in Policy Modeling Journal Article In: IEEE Computer Graphics and Applications (CG&A), vol. 32, no. 5, pp. 84-89, 2012, ISSN: 0272-1716. Abstract | Links | BibTeX | Tags: Data Analytics, eGovernance, Human Factors, Human-centered user interfaces, Human-computer interaction (HCI), Information visualization, Intelligent Systems, Policy modeling, Semantic data modeling, Semantic visualization, Visual analytics @article{6311373, This article looks at the current and future roles of information visualization, semantics visualization, and visual analytics in policy modeling. Many experts believe that you can't overestimate visualization's role in this respect. |
2. | Christian Stab; Matthias Breyer; Dirk Burkhardt; Kawa Nazemi; Jörn Kohlhammer Analytical semantics visualization for discovering latent signals in large text collections Inproceedings In: Andreas Kerren; Stefan Seipel (Ed.): Proceedings of SIGRAD 2012; Interactive Visual Analysis of Data; November 29-30; 2012; Växjö; Sweden, pp. 83–86, Linköping University Linköping University Electronic Press, 2012, ISBN: 978-91-7519-723-4. Abstract | Links | BibTeX | Tags: Data Analytics, Data Visualization, Semantic data modeling, Visual analytics @inproceedings{stab2012analytical, Considering the increasing pressure of competition and high dynamics of markets; the early identification and specific handling of novel developments and trends becomes more and more important for competitive companies. Today; those signals are encoded in large amounts of textual data like competitors’ web sites; news articles; scientific publications or blog entries which are freely available in the web. Processing large amounts of textual data is still a tremendous challenge for current business analysts and strategic decision makers. Although current information systems are able to process that amount of data and provide a wide range of information retrieval tools; it is almost impossible to keep track of each thread or opportunity. The presented approach combines semantic search and data mining techniques with interactive visualizations for analyzing and identifying weak signals in large text collections. Beside visual summarization tools; it includes an enhanced trend visualization that supports analysts in identifying latent topic-related relations between competitors and their temporal relevance. It includes a graph-based visualization tool for representing relations identified during semantic analysis. The interaction design allows analysts to verify their retrieved hypothesis by exploring the documents that are responsible for the current view. |
2010 | |
1. | Dirk Burkhardt; Cristian Erik Hofmann; Kawa Nazemi; Christian Stab; Matthias Breyer; Dieter W. Fellner Intuitive Semantic-Editing for Regarding Needs of Domain-Experts Conference Proceedings of ED-Media 2010, The Association for the Advancement of Computing in Education (AACE), 2010, ISBN: 978-1-880094-81-5. Abstract | Links | BibTeX | Tags: Graphical interactive user interfaces, Intelligent user interfaces, Semantic data modeling, Semantic visualization, Semantic web @conference{C35-P-21399, Ontologies are used to represent knowledge and their semantic information from different topics, to allow users a better way to explore knowledge and find information faster, because of the data-structuring. To achieve a well filled knowledgebase, editors have to be used, to enter new and to edit existing information. But most of the existing ontology-editors are designed for experienced ontology-experts. Experts from other topic fields e.g. physicians are often novices in the area of ontology-creating, they need adequate tools, which hide the complexity of ontology-structures. In the area of e-learning experts are also teachers as well. In this paper we will present a method, how the needs of domain-experts can be regarded and so an editor can designed, which allows an editing and adding of information by users without having experiences of creating ontologies. With such an editor domain-experts are able to commit their expert-knowledge into the ontology. |