2023 |
49. | Kawa Nazemi Artificial Intelligence in Visual Analytics Inproceedings In: Proceedings of the 27th International Conference Information Visualisation (IV2023), Best Paper Award, pp. 230 - 237, IEEE CPS, 2023. @inproceedings{Nazemi2023,
title = {Artificial Intelligence in Visual Analytics},
author = {Kawa Nazemi},
doi = {10.1109/IV60283.2023.00048},
year = {2023},
date = {2023-11-30},
urldate = {2023-11-30},
booktitle = {Proceedings of the 27th International Conference Information Visualisation (IV2023), Best Paper Award},
journal = {Proceedings of the 27th International Conference Information Visualisation (IV2023) - Best Paper Award-},
pages = {230 - 237},
publisher = {IEEE CPS},
abstract = {Visual Analytics that combines automated methods with information visualization has emerged as a powerful approach to analytical reasoning. The integration of artificial intelligence techniques into Visual Analytics has enhanced its capabilities but also presents challenges related to interpretability, explainability, and decision-making processes. Visual Analytics may use artificial intelligence methods to provide enhanced and more powerful analytical reasoning capabilities. Furthermore, Visual Analytics can be used to interpret black-box artificial intelligence models and provide a visual explanation of those models. In this paper, we provide an overview of the state-of-the-art of artificial intelligence techniques used in Visual Analytics, focusing on both explainable artificial intelligence in Visual Analytics and the human knowledge generation process through Visual Analytics. We review explainable artificial intelligence approaches in Visual Analytics and propose a revised Visual Analytics model for Explainable artificial intelligence based on an existing model. We then conduct a screening review of artificial intelligence methods in Visual Analytics from two time periods to highlight recently used artificial intelligence approaches in Visual Analytics. Based on this review, we propose a revised task model for tasks in Visual Analytics. Our contributions include a state-of-the-art review of explainable artificial intelligence in Visual Analytics, a revised model for creating explainable artificial intelligence through Visual Analytics, a screening review of recent artificial intelligence methods in Visual Analytics, and a revised task model for generic tasks in Visual Analytics.},
keywords = {Artificial Intelligence, Visual Analytical Reasoning, Visual analytics, Visual Tasks},
pubstate = {published},
tppubtype = {inproceedings}
}
Visual Analytics that combines automated methods with information visualization has emerged as a powerful approach to analytical reasoning. The integration of artificial intelligence techniques into Visual Analytics has enhanced its capabilities but also presents challenges related to interpretability, explainability, and decision-making processes. Visual Analytics may use artificial intelligence methods to provide enhanced and more powerful analytical reasoning capabilities. Furthermore, Visual Analytics can be used to interpret black-box artificial intelligence models and provide a visual explanation of those models. In this paper, we provide an overview of the state-of-the-art of artificial intelligence techniques used in Visual Analytics, focusing on both explainable artificial intelligence in Visual Analytics and the human knowledge generation process through Visual Analytics. We review explainable artificial intelligence approaches in Visual Analytics and propose a revised Visual Analytics model for Explainable artificial intelligence based on an existing model. We then conduct a screening review of artificial intelligence methods in Visual Analytics from two time periods to highlight recently used artificial intelligence approaches in Visual Analytics. Based on this review, we propose a revised task model for tasks in Visual Analytics. Our contributions include a state-of-the-art review of explainable artificial intelligence in Visual Analytics, a revised model for creating explainable artificial intelligence through Visual Analytics, a screening review of recent artificial intelligence methods in Visual Analytics, and a revised task model for generic tasks in Visual Analytics. |
48. | Lennart B. Sina; Cristian A. Secco; Midhad Blazevic; Kawa Nazemi Visual Analytics for Corporate Foresight - A Conceptual Approach Inproceedings In: Proceedings of the 27th International Conference Information Visualisation (IV2023), pp. 244-250, IEEE CPS, 2023. @inproceedings{SinaIV2023,
title = {Visual Analytics for Corporate Foresight - A Conceptual Approach},
author = {Lennart B. Sina and Cristian A. Secco and Midhad Blazevic and Kawa Nazemi},
doi = {10.1109/IV60283.2023.00050},
year = {2023},
date = {2023-11-29},
urldate = {2023-11-29},
booktitle = {Proceedings of the 27th International Conference Information Visualisation (IV2023)},
pages = {244-250},
publisher = {IEEE CPS},
abstract = {Corporate Foresight is a strategic planning process that helps organizations anticipate and prepare for future trends and developments that may impact their operations. It involves analyzing data, identifying potential scenarios, and creating strategies to address them to ensure long-term success and sustainability. Visual Analytics approaches have been introduced to cover parts of the Corporate Foresight process. These concepts present different approaches to integrate machine learning methods and artificial intelligence with interactive visualizations to solve tasks such as identifying emerging trends. A holistic concept for synthesizing Visual Analytics with Corporate Foresight does not exist yet. We propose in this work a holistic Visual Analytics approach that covers the main aspects of Corporate Foresight by including strategic management and considers different organizational forms. Our model goes beyond the state-of-the-art by providing, besides foresight also, hindsight and insight. Our main contributions are the revised Visual Analytics model and its proof of concept through implementation as a web-based system with real data.},
keywords = {Artificial Intelligence, Visual analytics},
pubstate = {published},
tppubtype = {inproceedings}
}
Corporate Foresight is a strategic planning process that helps organizations anticipate and prepare for future trends and developments that may impact their operations. It involves analyzing data, identifying potential scenarios, and creating strategies to address them to ensure long-term success and sustainability. Visual Analytics approaches have been introduced to cover parts of the Corporate Foresight process. These concepts present different approaches to integrate machine learning methods and artificial intelligence with interactive visualizations to solve tasks such as identifying emerging trends. A holistic concept for synthesizing Visual Analytics with Corporate Foresight does not exist yet. We propose in this work a holistic Visual Analytics approach that covers the main aspects of Corporate Foresight by including strategic management and considers different organizational forms. Our model goes beyond the state-of-the-art by providing, besides foresight also, hindsight and insight. Our main contributions are the revised Visual Analytics model and its proof of concept through implementation as a web-based system with real data. |
47. | Ebad Banissi; Harri Siirtola; Anna Ursyn; João Moura Pires; Nuno Datia; Kawa Nazemi; Boris Kovalerchuk; Razvan Andonie; Minoru Nakayama; Marco Temperini; Filippo Sciarrone; Quang Vinh Nguyen; Mabule Samuel Mabakane; Adrian Rusu; Urska Cvek; Marjan Trutschl; Heimo Mueller; Rita Francese; Fatma Boua-li; Gilles Venturini (Ed.) Proceedings of 2023 27th International Conference Information Visualisation Proceeding 2023, ISBN: 979-8-3503-4161-4. @proceedings{Banissi2023,
title = {Proceedings of 2023 27th International Conference Information Visualisation},
editor = {Ebad Banissi and Harri Siirtola and Anna Ursyn and João Moura Pires and Nuno Datia and Kawa Nazemi and Boris Kovalerchuk and Razvan Andonie and Minoru Nakayama and Marco Temperini and Filippo Sciarrone and Quang Vinh Nguyen and Mabule Samuel Mabakane and Adrian Rusu and Urska Cvek and Marjan Trutschl and Heimo Mueller and Rita Francese and Fatma Boua-li and Gilles Venturini },
doi = {10.1109/IV60283.2023.00001},
isbn = {979-8-3503-4161-4},
year = {2023},
date = {2023-11-01},
urldate = {2023-11-01},
issue = {IV2023},
abstract = {Do aspects of our lives depend on and are driven by data, information, knowledge, user experience, and cultural influences in the current information era? Does the infrastructure of any information-dependent society rely on the quality of data, information, and analysis of such entities from past and present and projected future activities and, most importantly, how it is intended to be applied? Information Visualization, Analytics, Machine Learning, Artificial Intelligence, and Application domains are state-of-the-art developments that effectively enhance understanding of these well-established drivers. Several key interdependent variables are emerging that are becoming the focus of scientific activities, such as Information and Data Science. Aspects tightly tie raw data (origin, autonomous capture, classification, incompleteness, impurity, filtering) and data scale to knowledge acquisition. Its dependencies on the application domain and its evolution steer the next generation of research activities. From raw data to knowledge, processing the relationship between these phases has added new impetus to understanding and communicating these. The tradition of use and communication by visualization is deep-rooted. It helps us investigate new meanings for the humanities, history of art, design, human factors, and user experience, leading to knowledge discoveries and hypothesis analysis. Modern-day computer-aided analytics and visualization have added momentum in developing tools that exploit metaphor-driven techniques within many applied domains to simply storytelling through data. The methods are developed beyond visualization to simplify the complexities, reveal ambiguity, and work with incompleteness. The next phase of this evolving field is to understand uncertainty, risk analysis, and tapping into unknowns; this uncertainty is built into all stages of the processes, from raw data to the knowledge acquisition stage. But there is a new twist: fast-developing generative AI with ever-increasing access to data outsmarting humans in decision-making. A new evolutionary step in the human journey, no doubt.},
keywords = {Artificial Intelligence, Data Analytics, Data Science, Visual analytics, Visual Knowledge Discovery},
pubstate = {published},
tppubtype = {proceedings}
}
Do aspects of our lives depend on and are driven by data, information, knowledge, user experience, and cultural influences in the current information era? Does the infrastructure of any information-dependent society rely on the quality of data, information, and analysis of such entities from past and present and projected future activities and, most importantly, how it is intended to be applied? Information Visualization, Analytics, Machine Learning, Artificial Intelligence, and Application domains are state-of-the-art developments that effectively enhance understanding of these well-established drivers. Several key interdependent variables are emerging that are becoming the focus of scientific activities, such as Information and Data Science. Aspects tightly tie raw data (origin, autonomous capture, classification, incompleteness, impurity, filtering) and data scale to knowledge acquisition. Its dependencies on the application domain and its evolution steer the next generation of research activities. From raw data to knowledge, processing the relationship between these phases has added new impetus to understanding and communicating these. The tradition of use and communication by visualization is deep-rooted. It helps us investigate new meanings for the humanities, history of art, design, human factors, and user experience, leading to knowledge discoveries and hypothesis analysis. Modern-day computer-aided analytics and visualization have added momentum in developing tools that exploit metaphor-driven techniques within many applied domains to simply storytelling through data. The methods are developed beyond visualization to simplify the complexities, reveal ambiguity, and work with incompleteness. The next phase of this evolving field is to understand uncertainty, risk analysis, and tapping into unknowns; this uncertainty is built into all stages of the processes, from raw data to the knowledge acquisition stage. But there is a new twist: fast-developing generative AI with ever-increasing access to data outsmarting humans in decision-making. A new evolutionary step in the human journey, no doubt. |
2022 |
46. | Lukas Kaupp; Kawa Nazemi; Bernhard Humm Evaluation of the Flourish Dashboard for Context-Aware Fault Diagnosis in Industry 4.0 Smart Factories Journal Article In: Electronics, vol. 11, no. 23, 2022, ISSN: 2079-9292. @article{electronics11233942,
title = {Evaluation of the Flourish Dashboard for Context-Aware Fault Diagnosis in Industry 4.0 Smart Factories},
author = { Lukas Kaupp and Kawa Nazemi and Bernhard Humm},
editor = {Kawa Nazemi and Egils Ginters and Michael Bazant},
doi = {10.3390/electronics11233942},
issn = {2079-9292},
year = {2022},
date = {2022-11-01},
urldate = {2022-11-01},
journal = {Electronics},
volume = {11},
number = {23},
abstract = {Cyber-physical systems become more complex, therewith production lines become more complex in the smart factory. Every employed system produces high amounts of data with unknown dependencies and relationships, making incident reasoning difficult. Context-aware fault diagnosis can unveil such relationships on different levels. A fault diagnosis application becomes context-aware when the current production situation is used in the reasoning process. We have already published TAOISM, a visual analytics model defining the context-aware fault diagnosis process for the Industry 4.0 domain. In this article, we propose the Flourish dashboard for context-aware fault diagnosis. The eponymous visualization Flourish is a first implementation of a context-displaying visualization for context-aware fault diagnosis in an Industry 4.0 setting. We conducted a questionnaire and interview-based bilingual evaluation with two user groups based on contextual faults recorded in a production-equal smart factory. Both groups provided qualitative feedback after using the Flourish dashboard. We positively evaluate the Flourish dashboard as an essential part of the context-aware fault diagnosis and discuss our findings, open gaps, and future research directions.},
keywords = {Artificial Intelligence, Case Study, Data Analytics, Data Science, Data Visualization, Decision Making, Decision Support Systems, Evaluation, smart factory, Smart manufacturing, Visual analytics},
pubstate = {published},
tppubtype = {article}
}
Cyber-physical systems become more complex, therewith production lines become more complex in the smart factory. Every employed system produces high amounts of data with unknown dependencies and relationships, making incident reasoning difficult. Context-aware fault diagnosis can unveil such relationships on different levels. A fault diagnosis application becomes context-aware when the current production situation is used in the reasoning process. We have already published TAOISM, a visual analytics model defining the context-aware fault diagnosis process for the Industry 4.0 domain. In this article, we propose the Flourish dashboard for context-aware fault diagnosis. The eponymous visualization Flourish is a first implementation of a context-displaying visualization for context-aware fault diagnosis in an Industry 4.0 setting. We conducted a questionnaire and interview-based bilingual evaluation with two user groups based on contextual faults recorded in a production-equal smart factory. Both groups provided qualitative feedback after using the Flourish dashboard. We positively evaluate the Flourish dashboard as an essential part of the context-aware fault diagnosis and discuss our findings, open gaps, and future research directions. |
45. | Lukas Kaupp; Kawa Nazemi; Bernhard Humm Context-Aware Diagnosis in Smart Manufacturing: TAOISM, An Industry 4.0-Ready Visual Analytics Model Book Chapter In: Boris Kovalerchuk; Kawa Nazemi; Răzvan Andonie; Nuno Datia; Ebad Banissi (Ed.): Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery, pp. 403–436, Springer International Publishing, Cham, 2022, ISBN: 978-3-030-93119-3. @inbook{Kaupp2022,
title = {Context-Aware Diagnosis in Smart Manufacturing: TAOISM, An Industry 4.0-Ready Visual Analytics Model},
author = {Lukas Kaupp and Kawa Nazemi and Bernhard Humm},
editor = {Boris Kovalerchuk and Kawa Nazemi and Răzvan Andonie and Nuno Datia and Ebad Banissi},
doi = {10.1007/978-3-030-93119-3_16},
isbn = {978-3-030-93119-3},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
booktitle = {Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery},
pages = {403--436},
publisher = {Springer International Publishing},
address = {Cham},
abstract = {The integration of cyber-physical systems accelerates Industry 4.0. Smart factories become more and more complex, with novel connections, relationships, and dependencies. Consequently, complexity also rises with the vast amount of data. While acquiring data from all the involved systems and protocols remains challenging, the assessment and reasoning of information are complex for tasks like fault detection and diagnosis. Furthermore, through the risen complexity of smart manufacturing, the diagnosis process relies even more on the current situation, the context. Current Visual Analytics models prevail only a vague definition of context. This chapter presents an updated and extended version of the TAOISM Visual Analytics model based on our previous work. The model defines the context in smart manufacturing that enables context-aware diagnosis and analysis. Additionally, we extend our model in contrast to our previous work with context hierarchies, an applied use case on open-source data, transformation strategies, an algorithm to acquire context information automatically and present a concept of context-based information aggregation as well as a test of context-aware diagnosis with latest advances in neural networks. We fuse methodologies, algorithms, and specifications of both vital research fields, Visual Analytics and Smart Manufacturing, together with our previous findings to build a living Visual Analytics model open for future research.},
keywords = {Artificial Intelligence, Machine Leanring, Machine Learning, mobility indicators for visual analytics, smart factory, Smart manufacturing, Visual Analytical Reasoning, Visual analytics, Visual Knowledge Discovery},
pubstate = {published},
tppubtype = {inbook}
}
The integration of cyber-physical systems accelerates Industry 4.0. Smart factories become more and more complex, with novel connections, relationships, and dependencies. Consequently, complexity also rises with the vast amount of data. While acquiring data from all the involved systems and protocols remains challenging, the assessment and reasoning of information are complex for tasks like fault detection and diagnosis. Furthermore, through the risen complexity of smart manufacturing, the diagnosis process relies even more on the current situation, the context. Current Visual Analytics models prevail only a vague definition of context. This chapter presents an updated and extended version of the TAOISM Visual Analytics model based on our previous work. The model defines the context in smart manufacturing that enables context-aware diagnosis and analysis. Additionally, we extend our model in contrast to our previous work with context hierarchies, an applied use case on open-source data, transformation strategies, an algorithm to acquire context information automatically and present a concept of context-based information aggregation as well as a test of context-aware diagnosis with latest advances in neural networks. We fuse methodologies, algorithms, and specifications of both vital research fields, Visual Analytics and Smart Manufacturing, together with our previous findings to build a living Visual Analytics model open for future research. |
44. | Boris Kovalerchuk; Kawa Nazemi; Răzvan Andonie; Nuno Datia; Ebad Banissi (Ed.) Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery Book Springer Nature, Cham, 2022, ISBN: 978-3-030-93118-6. @book{Kovalerchuk2022,
title = {Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery},
editor = {Boris Kovalerchuk and Kawa Nazemi and Răzvan Andonie and Nuno Datia and Ebad Banissi},
doi = {10.1007/978-3-030-93119-3},
isbn = {978-3-030-93118-6},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
publisher = {Springer Nature},
address = {Cham},
series = {Studies in Computational Intelligence},
abstract = {This book is devoted to the emerging field of integrated visual knowledge discovery that combines advances in artificial intelligence/machine learning and visualization/visual analytic. A long-standing challenge of artificial intelligence (AI) and machine learning (ML) is explaining models to humans, especially for live-critical applications like health care. A model explanation is fundamentally human activity, not only an algorithmic one. As current deep learning studies demonstrate, it makes the paradigm based on the visual methods critically important to address this challenge. In general, visual approaches are critical for discovering explainable high-dimensional patterns in all types in high-dimensional data offering "n-D glasses," where preserving high-dimensional data properties and relations in visualizations is a major challenge. The current progress opens a fantastic opportunity in this domain.
This book is a collection of 25 extended works of over 70 scholars presented at AI and visual analytics related symposia at the recent International Information Visualization Conferences with the goal of moving this integration to the next level. The sections of this book cover integrated systems, supervised learning, unsupervised learning, optimization, and evaluation of visualizations.
The intended audience for this collection includes those developing and using emerging AI/machine learning and visualization methods. Scientists, practitioners, and students can find multiple examples of the current integration of AI/machine learning and visualization for visual knowledge discovery. The book provides a vision of future directions in this domain. New researchers will find here an inspiration to join the profession and to be involved for further development. Instructors in AI/ML and visualization classes can use it as a supplementary source in their undergraduate and graduate classes.},
key = {SP2022},
keywords = {Artificial Intelligence, Computational Intelligence, Machine Learning, Visual Analytical Reasoning, Visual analytics, Visual Knowledge Discovery},
pubstate = {published},
tppubtype = {book}
}
This book is devoted to the emerging field of integrated visual knowledge discovery that combines advances in artificial intelligence/machine learning and visualization/visual analytic. A long-standing challenge of artificial intelligence (AI) and machine learning (ML) is explaining models to humans, especially for live-critical applications like health care. A model explanation is fundamentally human activity, not only an algorithmic one. As current deep learning studies demonstrate, it makes the paradigm based on the visual methods critically important to address this challenge. In general, visual approaches are critical for discovering explainable high-dimensional patterns in all types in high-dimensional data offering "n-D glasses," where preserving high-dimensional data properties and relations in visualizations is a major challenge. The current progress opens a fantastic opportunity in this domain. This book is a collection of 25 extended works of over 70 scholars presented at AI and visual analytics related symposia at the recent International Information Visualization Conferences with the goal of moving this integration to the next level. The sections of this book cover integrated systems, supervised learning, unsupervised learning, optimization, and evaluation of visualizations. The intended audience for this collection includes those developing and using emerging AI/machine learning and visualization methods. Scientists, practitioners, and students can find multiple examples of the current integration of AI/machine learning and visualization for visual knowledge discovery. The book provides a vision of future directions in this domain. New researchers will find here an inspiration to join the profession and to be involved for further development. Instructors in AI/ML and visualization classes can use it as a supplementary source in their undergraduate and graduate classes. |
43. | Kawa Nazemi; Tim Feiter; Lennart B. Sina; Dirk Burkhardt; Alexander Kock Visual Analytics for Strategic Decision Making in Technology Management Book Chapter In: Boris Kovalerchuk; Kawa Nazemi; Răzvan Andonie; Nuno Datia; Ebad Banissi (Ed.): Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery, pp. 31–61, Springer International Publishing, Cham, 2022, ISBN: 978-3-030-93119-3. @inbook{Nazemi2022,
title = {Visual Analytics for Strategic Decision Making in Technology Management},
author = {Kawa Nazemi and Tim Feiter and Lennart B. Sina and Dirk Burkhardt and Alexander Kock},
editor = {Boris Kovalerchuk and Kawa Nazemi and Răzvan Andonie and Nuno Datia and Ebad Banissi},
doi = {10.1007/978-3-030-93119-3_2},
isbn = {978-3-030-93119-3},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
booktitle = {Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery},
pages = {31--61},
publisher = {Springer International Publishing},
address = {Cham},
abstract = {Strategic foresight, corporate foresight, and technology management enable firms to detect discontinuous changes early and develop future courses for a more sophisticated market positioning. The enhancements in machine learning and artificial intelligence allow more automatic detection of early trends to create future courses and make strategic decisions. Visual Analytics combines methods of automated data analysis through machine learning methods and interactive visualizations. It enables a far better way to gather insights from a vast amount of data to make a strategic decision. While Visual Analytics got various models and approaches to enable strategic decision-making, the analysis of trends is still a matter of research. The forecasting approaches and involvement of humans in the visual trend analysis process require further investigation that will lead to sophisticated analytical methods. We introduce in this paper a novel model of Visual Analytics for decision-making, particularly for technology management, through early trends from scientific publications. We combine Corporate Foresight and Visual Analytics and propose a machine learning-based Technology Roadmapping based on our previous work.},
keywords = {Artificial Intelligence, Machine Leanring, Visual Analytical Reasoning, Visual analytics, Visual Knowledge Discovery},
pubstate = {published},
tppubtype = {inbook}
}
Strategic foresight, corporate foresight, and technology management enable firms to detect discontinuous changes early and develop future courses for a more sophisticated market positioning. The enhancements in machine learning and artificial intelligence allow more automatic detection of early trends to create future courses and make strategic decisions. Visual Analytics combines methods of automated data analysis through machine learning methods and interactive visualizations. It enables a far better way to gather insights from a vast amount of data to make a strategic decision. While Visual Analytics got various models and approaches to enable strategic decision-making, the analysis of trends is still a matter of research. The forecasting approaches and involvement of humans in the visual trend analysis process require further investigation that will lead to sophisticated analytical methods. We introduce in this paper a novel model of Visual Analytics for decision-making, particularly for technology management, through early trends from scientific publications. We combine Corporate Foresight and Visual Analytics and propose a machine learning-based Technology Roadmapping based on our previous work. |
2021 |
42. | Kawa Nazemi; Dirk Burkhardt; Alexander Kock Visual analytics for technology and innovation management: An interaction approach for strategic decisionmaking Journal Article In: Multimedia Tools and Applications, vol. 1198, 2021, ISSN: 1573-7721. @article{Nazemi2021b,
title = {Visual analytics for technology and innovation management: An interaction approach for strategic decisionmaking },
author = {Kawa Nazemi and Dirk Burkhardt and Alexander Kock},
editor = {Rita Francese and Borko Furht},
doi = {10.1007/s11042-021-10972-3},
issn = {1573-7721},
year = {2021},
date = {2021-05-20},
journal = {Multimedia Tools and Applications},
volume = {1198},
abstract = {The awareness of emerging trends is essential for strategic decision making because technological trends can affect a firm’s competitiveness and market position. The rise of artificial intelligence methods allows gathering new insights and may support these decision-making processes. However, it is essential to keep the human in the loop of these complex analytical tasks, which, often lack an appropriate interaction design. Including special interactive designs for technology and innovation management is therefore essential for successfully analyzing emerging trends and using this information for strategic decision making. A combination of information visualization, trend mining and interaction design can support human users to explore, detect, and identify such trends. This paper enhances and extends a previously published first approach for integrating, enriching, mining, analyzing, identifying, and visualizing emerging trends for technology and innovation management. We introduce a novel interaction design by investigating the main ideas from technology and innovation management and enable a more appropriate interaction approach for technology foresight and innovation detection.},
keywords = {emerging trend identification, Information visualization, Innovation Management, Interaction Design, Multimodal Interaction, Technology Management, Visual analytics, Visual Trend Analytics},
pubstate = {published},
tppubtype = {article}
}
The awareness of emerging trends is essential for strategic decision making because technological trends can affect a firm’s competitiveness and market position. The rise of artificial intelligence methods allows gathering new insights and may support these decision-making processes. However, it is essential to keep the human in the loop of these complex analytical tasks, which, often lack an appropriate interaction design. Including special interactive designs for technology and innovation management is therefore essential for successfully analyzing emerging trends and using this information for strategic decision making. A combination of information visualization, trend mining and interaction design can support human users to explore, detect, and identify such trends. This paper enhances and extends a previously published first approach for integrating, enriching, mining, analyzing, identifying, and visualizing emerging trends for technology and innovation management. We introduce a novel interaction design by investigating the main ideas from technology and innovation management and enable a more appropriate interaction approach for technology foresight and innovation detection. |
41. | Midhad Blazevic; Lennart B. Sina; Dirk Burkhardt; Melanie Siegel; Kawa Nazemi Visual Analytics and Similarity Search - Interest-based Similarity Search in Scientific Data Inproceedings In: 2021 25th International Conference Information Visualisation (IV), pp. 211-217, IEEE, 2021. @inproceedings{9582711,
title = {Visual Analytics and Similarity Search - Interest-based Similarity Search in Scientific Data},
author = {Midhad Blazevic and Lennart B. Sina and Dirk Burkhardt and Melanie Siegel and Kawa Nazemi},
doi = {10.1109/IV53921.2021.00041},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
booktitle = {2021 25th International Conference Information Visualisation (IV)},
pages = {211-217},
publisher = {IEEE},
abstract = {Visual Analytics enables solving complex analytical tasks by coupling interactive visualizations and machine learning approaches. Besides the analytical reasoning enabled through Visual Analytics, the exploration of data plays an essential role. The exploration process can be supported through similarity-based approaches that enable finding similar data to those annotated in the context of visual exploration. We propose in this paper a process of annotation in the context of exploration that leads to labeled vectors-of-interest and enables finding similar publications based on interest vectors. The generation and labeling of the interest vectors are performed automatically by the Visual Analytics system and lead to finding similar papers and categorizing the annotated papers. With this approach, we provide a categorized similarity search based on an automatically labeled interest matrix in Visual Analytics.},
keywords = {Artificial Intelligence, Collaboration, Collaborative Systems, Information visualization, Similarity, Visual analytics},
pubstate = {published},
tppubtype = {inproceedings}
}
Visual Analytics enables solving complex analytical tasks by coupling interactive visualizations and machine learning approaches. Besides the analytical reasoning enabled through Visual Analytics, the exploration of data plays an essential role. The exploration process can be supported through similarity-based approaches that enable finding similar data to those annotated in the context of visual exploration. We propose in this paper a process of annotation in the context of exploration that leads to labeled vectors-of-interest and enables finding similar publications based on interest vectors. The generation and labeling of the interest vectors are performed automatically by the Visual Analytics system and lead to finding similar papers and categorizing the annotated papers. With this approach, we provide a categorized similarity search based on an automatically labeled interest matrix in Visual Analytics. |
2020 |
40. | Dirk Burkhardt; Kawa Nazemi; Egils Ginters Innovations in Mobility and Logistics: Assistance of Complex Analytical Processes in Visual Trend Analytics Inproceedings In: Janis Grabis; Andrejs Romanovs; Galina Kulesova (Ed.): 2020 61st International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS), pp. 1-6, IEEE, 2020, ISBN: 978-1-7281-9105-8. @inproceedings{Burkhardt2020c,
title = {Innovations in Mobility and Logistics: Assistance of Complex Analytical Processes in Visual Trend Analytics},
author = {Dirk Burkhardt and Kawa Nazemi and Egils Ginters},
editor = {Janis Grabis and Andrejs Romanovs and Galina Kulesova},
doi = {10.1109/ITMS51158.2020.9259309},
isbn = {978-1-7281-9105-8},
year = {2020},
date = {2020-11-19},
booktitle = {2020 61st International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS)},
pages = {1-6},
publisher = {IEEE},
abstract = {A variety of new technologies and ideas for businesses are arising in the domain of logistics and mobility. It can be differentiated between fundamental new approaches, e.g. central packaging stations or deliveries via drones and minor technological advancements that aim on more ecologically and economic transportation. The need for analytical systems that enable identifying new technologies, innovations, business models etc. and give also the opportunity to rate those in perspective of business relevance is growing. The users’ behavior is commonly investigated in adaptive systems, which is considering the induvial preferences of users, but neglecting often the tasks and goals of the analysis. A process-related supports could assist to solve an analytical task in a more efficient and effective way. We introduce in this paper an approach that enables non-professionals to perform visual trend analysis through an advanced process assistance based on process mining and visual adaptation. This allows generating a process model based on events, which is the baseline for process support feature calculation. These features in form of visual adaptations and the process model enable assisting non-experts in complex analytical tasks.},
keywords = {Adaptive Visualization, logistics, Process Mining, Transportation, Trend Analytics, Visual analytics},
pubstate = {published},
tppubtype = {inproceedings}
}
A variety of new technologies and ideas for businesses are arising in the domain of logistics and mobility. It can be differentiated between fundamental new approaches, e.g. central packaging stations or deliveries via drones and minor technological advancements that aim on more ecologically and economic transportation. The need for analytical systems that enable identifying new technologies, innovations, business models etc. and give also the opportunity to rate those in perspective of business relevance is growing. The users’ behavior is commonly investigated in adaptive systems, which is considering the induvial preferences of users, but neglecting often the tasks and goals of the analysis. A process-related supports could assist to solve an analytical task in a more efficient and effective way. We introduce in this paper an approach that enables non-professionals to perform visual trend analysis through an advanced process assistance based on process mining and visual adaptation. This allows generating a process model based on events, which is the baseline for process support feature calculation. These features in form of visual adaptations and the process model enable assisting non-experts in complex analytical tasks. |
39. | Kawa Nazemi; Matthias Kowald; Till Dannewald; Dirk Burkhardt; Egils Ginters Visual Analytics Indicators for Mobility and Transportation Inproceedings In: Janis Grabis; Andrejs Romanovs; Galina Kulesova (Ed.): 2020 61st International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS), pp. 1-6, IEEE, 2020, ISBN: 978-1-7281-9105-8. @inproceedings{Nazemi2020c,
title = {Visual Analytics Indicators for Mobility and Transportation},
author = {Kawa Nazemi and Matthias Kowald and Till Dannewald and Dirk Burkhardt and Egils Ginters},
editor = {Janis Grabis and Andrejs Romanovs and Galina Kulesova},
doi = {10.1109/ITMS51158.2020.9259321},
isbn = {978-1-7281-9105-8},
year = {2020},
date = {2020-11-19},
booktitle = {2020 61st International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS)},
pages = {1-6},
publisher = {IEEE},
abstract = {Visual Analytics enables a deep analysis of complex and multivariate data by applying machine learning methods and interactive visualization. These complex analyses lead to gain insights and knowledge for a variety of analytics tasks to enable the decision-making process. The enablement of decision-making processes is essential for managing and planning mobility and transportation. These are influenced by a variety of indicators such as new technological developments, ecological and economic changes, political decisions and in particular humans’ mobility behaviour. New technologies will lead to a different mobility behaviour with other constraints. These changes in mobility behaviour require analytical systems to forecast the required information and probably appearing changes. These systems must consider different perspectives and employ multiple indicators. Visual Analytics enable such analytical tasks. We introduce in this paper the main indicators for Visual Analytics for mobility and transportation that are exemplary explained through two case studies.},
keywords = {mobility analytics, mobility behaviour, mobility indicators for visual analytics, Visual analytics},
pubstate = {published},
tppubtype = {inproceedings}
}
Visual Analytics enables a deep analysis of complex and multivariate data by applying machine learning methods and interactive visualization. These complex analyses lead to gain insights and knowledge for a variety of analytics tasks to enable the decision-making process. The enablement of decision-making processes is essential for managing and planning mobility and transportation. These are influenced by a variety of indicators such as new technological developments, ecological and economic changes, political decisions and in particular humans’ mobility behaviour. New technologies will lead to a different mobility behaviour with other constraints. These changes in mobility behaviour require analytical systems to forecast the required information and probably appearing changes. These systems must consider different perspectives and employ multiple indicators. Visual Analytics enable such analytical tasks. We introduce in this paper the main indicators for Visual Analytics for mobility and transportation that are exemplary explained through two case studies. |
38. | Lennart B. Sina; Dirk Burkhardt; Kawa Nazemi Visual Dashboards in Trend Analytics to Observe Competitors and Leading Domain Experts Inproceedings In: Haithem Afli; Udo Bleimann; Dirk Burkhardt; Robert Loew; Stefanie Regier; Ingo Stengel; Haiying Wang; Huiru (Jane) Zheng (Ed.): Proceedings of the 6th Collaborative European Research Conference (CERC 2020), pp. 222-235, CEUR-WS.org, Aachen, Germany, 2020, ISSN: 1613-0073, (urn:nbn:de:0074-2815-0). @inproceedings{Sina2021,
title = {Visual Dashboards in Trend Analytics to Observe Competitors and Leading Domain Experts},
author = {Lennart B. Sina and Dirk Burkhardt and Kawa Nazemi},
editor = {Haithem Afli and Udo Bleimann and Dirk Burkhardt and Robert Loew and Stefanie Regier and Ingo Stengel and Haiying Wang and Huiru (Jane) Zheng},
url = {http://ceur-ws.org/Vol-2815/CERC2020_paper14.pdf, Paper on CEUR-WS},
issn = {1613-0073},
year = {2020},
date = {2020-09-11},
urldate = {2020-09-11},
booktitle = {Proceedings of the 6th Collaborative European Research Conference (CERC 2020)},
volume = {Vol. 2815},
pages = {222-235},
publisher = {CEUR-WS.org},
address = {Aachen, Germany},
series = {CEUR Workshop Proceedings},
abstract = {The rapid change due to digitalization challenge a variety of market players and force them to find strategies to be aware of developments in these markets, particularly those that impact their business. The main challenge is what a practical solution could look like and how technology can support market players in these trend observation tasks. The paper outlines therefore a technological solution to observe specific authors e.g. researchers who influence a certain market or engineers of competitors. In many branches both are well-known groups to market players and there is almost always the need of a technology that supports the topical observation. This paper focuses on the concept of how a visual dashboard could enable a market observation and how data must be processed for it and its prototypical implementation which enables an evaluation later. Furthermore, the definition of a principal technological analysis for innovation and technology management is created and is also an important contribution to the scientific community that specifically considers the technology perspective and its corresponding requirements.},
note = {urn:nbn:de:0074-2815-0},
keywords = {business intelligence, information exploration, Innovation Management, Visual analytics, Visual Trend Analysis},
pubstate = {published},
tppubtype = {inproceedings}
}
The rapid change due to digitalization challenge a variety of market players and force them to find strategies to be aware of developments in these markets, particularly those that impact their business. The main challenge is what a practical solution could look like and how technology can support market players in these trend observation tasks. The paper outlines therefore a technological solution to observe specific authors e.g. researchers who influence a certain market or engineers of competitors. In many branches both are well-known groups to market players and there is almost always the need of a technology that supports the topical observation. This paper focuses on the concept of how a visual dashboard could enable a market observation and how data must be processed for it and its prototypical implementation which enables an evaluation later. Furthermore, the definition of a principal technological analysis for innovation and technology management is created and is also an important contribution to the scientific community that specifically considers the technology perspective and its corresponding requirements. |
37. | Kawa Nazemi; Maike J. Klepsch; Dirk Burkhardt; Lukas Kaupp Comparison of Full-text Articles and Abstracts for Visual Trend Analytics through Natural Language Processing Inproceedings In: 2020 24th International Conference Information Visualisation (IV), pp. 360-367, IEEE, New York, USA, 2020, ISBN: 978-1-7281-9134-8. @inproceedings{Nazemi2020d,
title = {Comparison of Full-text Articles and Abstracts for Visual Trend Analytics through Natural Language Processing},
author = {Kawa Nazemi and Maike J. Klepsch and Dirk Burkhardt and Lukas Kaupp},
doi = {10.1109/IV51561.2020.00065},
isbn = {978-1-7281-9134-8},
year = {2020},
date = {2020-09-01},
urldate = {2020-09-01},
booktitle = {2020 24th International Conference Information Visualisation (IV)},
pages = {360-367},
publisher = {IEEE},
address = {New York, USA},
abstract = {Scientific publications are an essential resource for detecting emerging trends and innovations in a very early stage, by far earlier than patents may allow. Thereby Visual Analytics systems enable a deep analysis by applying commonly unsupervised machine learning methods and investigating a mass amount of data. A main question from the Visual Analytics viewpoint in this context is, do abstracts of scientific publications provide a similar analysis capability compared to their corresponding full-texts? This would allow to extract a mass amount of text documents in a much faster manner. We compare in this paper the topic extraction methods LSI and LDA by using full text articles and their corresponding abstracts to obtain which method and which data are better suited for a Visual Analytics system for Technology and Corporate Foresight. Based on a easy replicable natural language processing approach, we further investigate the impact of lemmatization for LDA and LSI. The comparison will be performed qualitative and quantitative to gather both, the human perception in visual systems and coherence values. Based on an application scenario a visual trend analytics system illustrates the outcomes.},
keywords = {Data Science, Natural Language Processing, Visual analytics, Visual Trend Analytics},
pubstate = {published},
tppubtype = {inproceedings}
}
Scientific publications are an essential resource for detecting emerging trends and innovations in a very early stage, by far earlier than patents may allow. Thereby Visual Analytics systems enable a deep analysis by applying commonly unsupervised machine learning methods and investigating a mass amount of data. A main question from the Visual Analytics viewpoint in this context is, do abstracts of scientific publications provide a similar analysis capability compared to their corresponding full-texts? This would allow to extract a mass amount of text documents in a much faster manner. We compare in this paper the topic extraction methods LSI and LDA by using full text articles and their corresponding abstracts to obtain which method and which data are better suited for a Visual Analytics system for Technology and Corporate Foresight. Based on a easy replicable natural language processing approach, we further investigate the impact of lemmatization for LDA and LSI. The comparison will be performed qualitative and quantitative to gather both, the human perception in visual systems and coherence values. Based on an application scenario a visual trend analytics system illustrates the outcomes. |
36. | Lukas Kaupp; Kawa Nazemi; Bernhard Humm An Industry 4.0-Ready Visual Analytics Model for Context-Aware Diagnosis in Smart Manufacturing Inproceedings In: 2020 24th International Conference Information Visualisation (IV), pp. 350-359, IEEE, New York, USA, 2020, ISBN: 978-1-7281-9134-8. @inproceedings{Nazemi2020db,
title = {An Industry 4.0-Ready Visual Analytics Model for Context-Aware Diagnosis in Smart Manufacturing},
author = {Lukas Kaupp and Kawa Nazemi and Bernhard Humm},
doi = {10.1109/IV51561.2020.00064},
isbn = {978-1-7281-9134-8},
year = {2020},
date = {2020-09-01},
booktitle = {2020 24th International Conference Information Visualisation (IV)},
pages = {350-359},
publisher = {IEEE},
address = {New York, USA},
abstract = {The integrated cyber-physical systems in Smart Manufacturing generate continuously vast amount of data. These complex data are difficult to assess and gather knowledge about the data. Tasks like fault detection and diagnosis are therewith difficult to solve. Visual Analytics mitigates complexity through the combined use of algorithms and visualization methods that allow to perceive information in a more accurate way. Thereby, reasoning relies more and more on the given situation within a smart manufacturing environment, namely the context. Current general Visual Analytics approaches only provide a vague definition of context. We introduce in this paper a model that specifies the context in Visual Analytics for Smart Manufacturing. Additionally, our model bridges the latest advances in research on Smart Manufacturing and Visual Analytics. We combine and summarize methodologies, algorithms and specifications of both vital research fields with our previous findings and fuse them together. As a result, we propose our novel industry 4.0-ready Visual Analytics model for context-aware diagnosis in Smart Manufacturing.},
keywords = {Analytical models, cyber-physical systems, Data Science, Industries, Outlier Detection, Pipelines, Protocols, Reasoning, Smart manufacturing, Task analysis, Visual analytics},
pubstate = {published},
tppubtype = {inproceedings}
}
The integrated cyber-physical systems in Smart Manufacturing generate continuously vast amount of data. These complex data are difficult to assess and gather knowledge about the data. Tasks like fault detection and diagnosis are therewith difficult to solve. Visual Analytics mitigates complexity through the combined use of algorithms and visualization methods that allow to perceive information in a more accurate way. Thereby, reasoning relies more and more on the given situation within a smart manufacturing environment, namely the context. Current general Visual Analytics approaches only provide a vague definition of context. We introduce in this paper a model that specifies the context in Visual Analytics for Smart Manufacturing. Additionally, our model bridges the latest advances in research on Smart Manufacturing and Visual Analytics. We combine and summarize methodologies, algorithms and specifications of both vital research fields with our previous findings and fuse them together. As a result, we propose our novel industry 4.0-ready Visual Analytics model for context-aware diagnosis in Smart Manufacturing. |
35. | Kawa Nazemi; Dirk Burkhardt; Lukas Kaupp; Till Dannewald; Matthias Kowald; Egils Ginters Visual Analytics in Mobility, Transportation and Logistics Inproceedings In: Egils Ginters; Mario Arturo Ruiz Estrada; Miquel Angel Piera Eroles (Ed.): ICTE in Transportation and Logistics 2019, pp. 82–89, Springer International Publishing, Cham, 2020, ISBN: 978-3-030-39688-6. @inproceedings{Nazemi2020,
title = {Visual Analytics in Mobility, Transportation and Logistics},
author = {Kawa Nazemi and Dirk Burkhardt and Lukas Kaupp and Till Dannewald and Matthias Kowald and Egils Ginters},
editor = {Egils Ginters and Mario Arturo Ruiz Estrada and Miquel Angel Piera Eroles},
doi = {10.1007/978-3-030-39688-6_12},
isbn = {978-3-030-39688-6},
year = {2020},
date = {2020-01-01},
booktitle = {ICTE in Transportation and Logistics 2019},
pages = {82--89},
publisher = {Springer International Publishing},
address = {Cham},
abstract = {Mobility, transportation and logistics are more and more influenced by a variety of indicators such as new technological developments, ecological and economic changes, political decisions and in particular humans' mobility behavior. These indicators will lead to massive changes in our daily live with regards to mobility, transportation and logistics. New technologies will lead to a different mobility behavior with new constraints. These changes in mobility behavior and logistics require analytical systems to forecast the required information and probably appearing changes. These systems have to consider different perspectives and employ multiple indicators. Visual Analytics provides both, the analytical approaches by including machine learning approaches and interactive visualizations to enable such analytical tasks. In this paper the main indicators for Visual Analytics in the domain of mobility transportation and logistics are discussed and followed by exemplary case studies to illustrate the advantages of such systems. The examples are aimed to demonstrate the benefits of Visual Analytics in mobility.},
keywords = {Data Analytics, Mobility Behavior, Visual analytics},
pubstate = {published},
tppubtype = {inproceedings}
}
Mobility, transportation and logistics are more and more influenced by a variety of indicators such as new technological developments, ecological and economic changes, political decisions and in particular humans' mobility behavior. These indicators will lead to massive changes in our daily live with regards to mobility, transportation and logistics. New technologies will lead to a different mobility behavior with new constraints. These changes in mobility behavior and logistics require analytical systems to forecast the required information and probably appearing changes. These systems have to consider different perspectives and employ multiple indicators. Visual Analytics provides both, the analytical approaches by including machine learning approaches and interactive visualizations to enable such analytical tasks. In this paper the main indicators for Visual Analytics in the domain of mobility transportation and logistics are discussed and followed by exemplary case studies to illustrate the advantages of such systems. The examples are aimed to demonstrate the benefits of Visual Analytics in mobility. |
2019 |
34. | Kawa Nazemi; Dirk Burkhardt Advanced Visual Analytical Reasoning for Technology and Innovation Management (AVARTIM) Miscellaneous Forschungstag 2019 der Hessischen Hochschulen für Angewandte Wissenschaften (HAW), Frankfurt, Germany, 2019. @misc{Nazemi2019db,
title = {Advanced Visual Analytical Reasoning for Technology and Innovation Management (AVARTIM)},
author = {Kawa Nazemi and Dirk Burkhardt},
url = {https://www.hessen.de/presse/veranstaltung/forschungstag-2019-der-hessischen-hochschulen-fuer-angewandte-wissenschaften, Event Website},
doi = {10.5281/zenodo.3517296},
year = {2019},
date = {2019-10-29},
abstract = {Im Rahmen des Vorhabens soll mit „AVARTIM“ ein softwaregestützter Prozess zum Erkennen und Bewerten von Trends, Markt- und Technologiesignalen entwickelt werden, um den Prozess des Innovations- und Technologiemanagements nachhaltig zu unterstützen. Dabei soll im Rahmen des Vorhabens eine Infrastruktur an der Hochschule Darmstadt aufgebaut werden, die modular ist und somit auf technologische Veränderungen schnell reagieren kann. Die zu entwickelnde Infrastruktur dient hierbei als Vorlaufforschung und Ausgangstechnologie sowohl für den industriellen Einsatz durch und mit den KMU Partnern als auch zur Beantragung von Verbundvorhaben.},
howpublished = {Forschungstag 2019 der Hessischen Hochschulen für Angewandte Wissenschaften (HAW), Frankfurt, Germany},
keywords = {Innovation Management, Technology Management, Trend Analytics, Visual Analytical Reasoning, Visual analytics},
pubstate = {published},
tppubtype = {misc}
}
Im Rahmen des Vorhabens soll mit „AVARTIM“ ein softwaregestützter Prozess zum Erkennen und Bewerten von Trends, Markt- und Technologiesignalen entwickelt werden, um den Prozess des Innovations- und Technologiemanagements nachhaltig zu unterstützen. Dabei soll im Rahmen des Vorhabens eine Infrastruktur an der Hochschule Darmstadt aufgebaut werden, die modular ist und somit auf technologische Veränderungen schnell reagieren kann. Die zu entwickelnde Infrastruktur dient hierbei als Vorlaufforschung und Ausgangstechnologie sowohl für den industriellen Einsatz durch und mit den KMU Partnern als auch zur Beantragung von Verbundvorhaben. |
33. | Kawa Nazemi; Dirk Burkhardt A Visual Analytics Approach for Analyzing Technological Trends in Technology and Innovation Management Inproceedings In: George Bebis; Richard Boyle; Bahram Parvin; Darko Koracin; Daniela Ushizima; Sek Chai; Shinjiro Sueda; Xin Lin; Aidong Lu; Daniel Thalmann; Chaoli Wang; Panpan Xu (Ed.): Advances in Visual Computing, pp. 283–294, Springer International Publishing, Cham, 2019, ISBN: 978-3-030-33723-0. @inproceedings{Nazemi_ISVC2019,
title = {A Visual Analytics Approach for Analyzing Technological Trends in Technology and Innovation Management},
author = {Kawa Nazemi and Dirk Burkhardt},
editor = {George Bebis and Richard Boyle and Bahram Parvin and Darko Koracin and Daniela Ushizima and Sek Chai and Shinjiro Sueda and Xin Lin and Aidong Lu and Daniel Thalmann and Chaoli Wang and Panpan Xu},
url = {https://rd.springer.com/chapter/10.1007/978-3-030-33723-0_23, Springer LNCS
https://dx.doi.org/10.5281/zenodo.3473065, doi:10.5281/zenodo.3473065 (Poster)},
doi = {10.1007/978-3-030-33723-0_23},
isbn = {978-3-030-33723-0},
year = {2019},
date = {2019-10-09},
booktitle = {Advances in Visual Computing},
pages = {283--294},
publisher = {Springer International Publishing},
address = {Cham},
abstract = {Visual Analytics provides with a combination of automated techniques and interactive visualizations huge analysis possibilities in technology and innovation management. Thereby not only the use of machine learning data mining methods plays an important role. Due to the high interaction capabilities, it provides a more user-centered approach, where users are able to manipulate the entire analysis process and get the most valuable information. Existing Visual Analytics systems for Trend Analytics and technology and innovation management do not really make use of this unique feature and almost neglect the human in the analysis process. Outcomes from research in information search, information visualization and technology management can lead to more sophisticated Visual Analytics systems that involved the human in the entire analysis process. We propose in this paper a new interaction approach for Visual Analytics in technology and innovation management with a special focus on technological trend analytics.},
keywords = {Artificial Intelligence, Data Analytics, Human Factors, Human-centered user interfaces, Human-computer interaction (HCI), Information visualization, Intelligent Systems, maschine learning, Visual analytics},
pubstate = {published},
tppubtype = {inproceedings}
}
Visual Analytics provides with a combination of automated techniques and interactive visualizations huge analysis possibilities in technology and innovation management. Thereby not only the use of machine learning data mining methods plays an important role. Due to the high interaction capabilities, it provides a more user-centered approach, where users are able to manipulate the entire analysis process and get the most valuable information. Existing Visual Analytics systems for Trend Analytics and technology and innovation management do not really make use of this unique feature and almost neglect the human in the analysis process. Outcomes from research in information search, information visualization and technology management can lead to more sophisticated Visual Analytics systems that involved the human in the entire analysis process. We propose in this paper a new interaction approach for Visual Analytics in technology and innovation management with a special focus on technological trend analytics. |
32. | Kawa Nazemi; Dirk Burkhardt Visual Analytics for Analyzing Technological Trends from Text Inproceedings In: 2019 23rd International Conference Information Visualisation (IV), pp. 191-200, IEEE, 2019, ISSN: 2375-0138, (Best Paper Award). @inproceedings{Nazemi2019d,
title = {Visual Analytics for Analyzing Technological Trends from Text},
author = {Kawa Nazemi and Dirk Burkhardt},
doi = {10.1109/IV.2019.00041},
issn = {2375-0138},
year = {2019},
date = {2019-07-01},
urldate = {2019-07-01},
booktitle = {2019 23rd International Conference Information Visualisation (IV)},
pages = {191-200},
publisher = {IEEE},
abstract = {The awareness of emerging technologies is essential for strategic decision making in enterprises. Emerging and decreasing technological trends could lead to strengthening the competitiveness and market positioning. The exploration, detection and identification of such trends can be essentially supported through information visualization, trend mining and in particular through the combination of those. Commonly, trends appear first in science and scientific documents. However, those documents do not provide sufficient information for analyzing and identifying emerging trends. It is necessary to enrich data, extract information from the integrated data, measure the gradient of trends over time and provide effective interactive visualizations. We introduce in this paper an approach for integrating, enriching, mining, analyzing, identifying and visualizing emerging trends from scientific documents. Our approach enhances the state of the art in visual trend analytics by investigating the entire analysis process and providing an approach for enabling human to explore undetected potentially emerging trends.},
note = {Best Paper Award},
keywords = {Artificial Intelligence, Data Mining, Data Models, Data Visualization, emerging trend identification, Hidden Markov models, Information visualization, Market research, Patents, Trend Analytics, Visual analytics, visual business analytics, Visualization},
pubstate = {published},
tppubtype = {inproceedings}
}
The awareness of emerging technologies is essential for strategic decision making in enterprises. Emerging and decreasing technological trends could lead to strengthening the competitiveness and market positioning. The exploration, detection and identification of such trends can be essentially supported through information visualization, trend mining and in particular through the combination of those. Commonly, trends appear first in science and scientific documents. However, those documents do not provide sufficient information for analyzing and identifying emerging trends. It is necessary to enrich data, extract information from the integrated data, measure the gradient of trends over time and provide effective interactive visualizations. We introduce in this paper an approach for integrating, enriching, mining, analyzing, identifying and visualizing emerging trends from scientific documents. Our approach enhances the state of the art in visual trend analytics by investigating the entire analysis process and providing an approach for enabling human to explore undetected potentially emerging trends. |
31. | Kawa Nazemi Visual Trend Analytics in Digital Libraries Miscellaneous Contribution at ASIS&T European Chapter Seminar on Information Science Trends: Search Engines and Information Retrieval., 2019. @misc{Naz19ASIST,
title = {Visual Trend Analytics in Digital Libraries},
author = {Kawa Nazemi},
url = {https://zenodo.org/record/3264801#.XSBcMo_gpaR, Zenodo Open Access},
doi = {10.5281/zenodo.3264801},
year = {2019},
date = {2019-04-26},
abstract = {The early awareness of upcoming trends in technology enables a more goal-directed and efficient way for deciding future strategic directions in enterprises and research. Possible sources for this valuable information are ubiquitously and freely available in the Web, e.g. news services, companies’ reports, social media platforms and blog infrastructures. To support users in handling these information sources and to keep track of the newest developments, current information systems make intensively use of information retrieval methods that extract relevant information out of the mass amount of data. The related information systems are commonly focused on providing users with easy access to information of their interest and deal with the access to information items and resources [1], but they neither provide an overview of the content nor enable the exploration of emerging or decreasing trends for inferring possible future innovations. The gathering and analysis of this continuously increasing knowledge pool is a very tedious and time-consuming task and borders on the limits of manual feasibility. The interactive overview on data, the continuous changes in data, and the ability to explore data and gain insights are sufficiently supported by Visual Analytics and information visualization approaches, whereas the appliance of such approach in combination with trend analysis are rarely propagated. In fact, these so-called early signals require not only an analysis through machine learning techniques to identify emerging trends, but also human interaction and intervention to adapt the parameters used to their own needs [2]. There are two main aspects to consider in the analysis process: 1) which data reveal very early trends and 2) how can human be involved in the analysis process [3].},
howpublished = {Contribution at ASIS&T European Chapter Seminar on Information Science Trends: Search Engines and Information Retrieval.},
keywords = {Information visualization, Trend analysis, Trend Analytics, Visual analytics},
pubstate = {published},
tppubtype = {misc}
}
The early awareness of upcoming trends in technology enables a more goal-directed and efficient way for deciding future strategic directions in enterprises and research. Possible sources for this valuable information are ubiquitously and freely available in the Web, e.g. news services, companies’ reports, social media platforms and blog infrastructures. To support users in handling these information sources and to keep track of the newest developments, current information systems make intensively use of information retrieval methods that extract relevant information out of the mass amount of data. The related information systems are commonly focused on providing users with easy access to information of their interest and deal with the access to information items and resources [1], but they neither provide an overview of the content nor enable the exploration of emerging or decreasing trends for inferring possible future innovations. The gathering and analysis of this continuously increasing knowledge pool is a very tedious and time-consuming task and borders on the limits of manual feasibility. The interactive overview on data, the continuous changes in data, and the ability to explore data and gain insights are sufficiently supported by Visual Analytics and information visualization approaches, whereas the appliance of such approach in combination with trend analysis are rarely propagated. In fact, these so-called early signals require not only an analysis through machine learning techniques to identify emerging trends, but also human interaction and intervention to adapt the parameters used to their own needs [2]. There are two main aspects to consider in the analysis process: 1) which data reveal very early trends and 2) how can human be involved in the analysis process [3]. |
30. | Kawa Nazemi; Dirk Burkhardt Visual analytical dashboards for comparative analytical tasks – a case study on mobility and transportation Journal Article In: ICTE in Transportation and Logistics 2018 (ICTE 2018), vol. 149, pp. 138-150, 2019, ISSN: 1877-0509. @article{Nazemi2019,
title = {Visual analytical dashboards for comparative analytical tasks – a case study on mobility and transportation},
author = {Kawa Nazemi and Dirk Burkhardt},
url = {http://www.sciencedirect.com/science/article/pii/S1877050919301243, Link to Publisher},
doi = {10.1016/j.procs.2019.01.117},
issn = {1877-0509},
year = {2019},
date = {2019-01-01},
journal = {ICTE in Transportation and Logistics 2018 (ICTE 2018)},
volume = {149},
pages = {138-150},
series = {Procedia Computer Science},
abstract = {Mobility, logistics and transportation are emerging fields of research and application. Humans’ mobility behavior plays an increasing role for societal challenges. Beside the societal challenges these areas are strongly related to technologies and innovations. Gathering information about emerging technologies plays an increasing role for the entire research in these areas. Humans’ information processing can be strongly supported by Visual Analytics that combines automatic modelling and interactive visualizations. The juxtapose orchestration of interactive visualization enables gathering more information in a shorter time. We propose in this paper an approach that goes beyond the established methods of dashboarding and enables visualizing different databases, data-sets and sub-sets of data with juxtaposed visual interfaces. Our approach should be seen as an expandable method. Our main contributions are an in-depth analysis of visual task models and an approach for juxtaposing visual layouts as visual dashboards to enable solving complex tasks. We illustrate our main outcome through a case study that investigates the area of mobility and illustrates how complex analytical tasks can be performed easily by combining different visual interfaces.},
keywords = {Data Analytics, Information visualization, Mobility, Prediction, Transportation, Visual analytics, Visual Interfaces, Visual Tasks},
pubstate = {published},
tppubtype = {article}
}
Mobility, logistics and transportation are emerging fields of research and application. Humans’ mobility behavior plays an increasing role for societal challenges. Beside the societal challenges these areas are strongly related to technologies and innovations. Gathering information about emerging technologies plays an increasing role for the entire research in these areas. Humans’ information processing can be strongly supported by Visual Analytics that combines automatic modelling and interactive visualizations. The juxtapose orchestration of interactive visualization enables gathering more information in a shorter time. We propose in this paper an approach that goes beyond the established methods of dashboarding and enables visualizing different databases, data-sets and sub-sets of data with juxtaposed visual interfaces. Our approach should be seen as an expandable method. Our main contributions are an in-depth analysis of visual task models and an approach for juxtaposing visual layouts as visual dashboards to enable solving complex tasks. We illustrate our main outcome through a case study that investigates the area of mobility and illustrates how complex analytical tasks can be performed easily by combining different visual interfaces. |
29. | Dirk Burkhardt; Kawa Nazemi Visual legal analytics – A visual approach to analyze law-conflicts of e-Services for e-Mobility and transportation domain Journal Article In: ICTE in Transportation and Logistics 2018 (ICTE 2018), vol. 149, pp. 515-524, 2019, ISSN: 1877-0509. @article{Burkhardt2019,
title = {Visual legal analytics – A visual approach to analyze law-conflicts of e-Services for e-Mobility and transportation domain},
author = {Dirk Burkhardt and Kawa Nazemi},
url = {http://www.sciencedirect.com/science/article/pii/S1877050919301784, Link to Publisher},
doi = {10.1016/j.procs.2019.01.170},
issn = {1877-0509},
year = {2019},
date = {2019-01-01},
journal = {ICTE in Transportation and Logistics 2018 (ICTE 2018)},
volume = {149},
pages = {515-524},
series = {Procedia Computer Science},
abstract = {The impact of the electromobility has next to the automotive industry also an increasing impact on the transportation and logistics domain. In particular the today’s starting switches to electronic trucks/scooter lead to massive changes in the organization and planning in this field. Public funding or tax reduction for environment friendly solutions forces also the growth of new mobility and transportation services. However, the vast changes in this domain and the high number of innovations of new technologies and services leads also into a critical legal uncertainty. The clarification of a legal status for a new technology or service can become cost intensive in a dimension that in particular startups could not invest. In this paper we therefore introduce a new approach to identify and analyze legal conflicts based on a business model or plan against existing laws. The intention is that an early awareness of critical legal aspect could enable an early adoption of the planned service to ensure its legality. Our main contribution is distinguished in two parts. Firstly, a new Norm-graph visualization approach to show laws and legal aspects in an easier understandable manner. And secondly, a Visual Legal Analytics approach to analyze legal conflicts e.g. on the basis of a business plans. The Visual Legal Analytics approach aims to provide a visual analysis interface to validate the automatically identified legal conflicts resulting from the pre-processing stage with a graphical overview about the derivation down to the law roots and the option to check the original sources to get further details. At the end analyst can so verify conflicts as relevant and resolve it by advancing e.g. the business plan or as irrelevant. An evaluation performed with lawyers has proofed our approach.},
keywords = {E-Government, e-Mobility Services, e-Transportation Services, Law Visualization, Legal analysis, Semantic Data, Visual analytics},
pubstate = {published},
tppubtype = {article}
}
The impact of the electromobility has next to the automotive industry also an increasing impact on the transportation and logistics domain. In particular the today’s starting switches to electronic trucks/scooter lead to massive changes in the organization and planning in this field. Public funding or tax reduction for environment friendly solutions forces also the growth of new mobility and transportation services. However, the vast changes in this domain and the high number of innovations of new technologies and services leads also into a critical legal uncertainty. The clarification of a legal status for a new technology or service can become cost intensive in a dimension that in particular startups could not invest. In this paper we therefore introduce a new approach to identify and analyze legal conflicts based on a business model or plan against existing laws. The intention is that an early awareness of critical legal aspect could enable an early adoption of the planned service to ensure its legality. Our main contribution is distinguished in two parts. Firstly, a new Norm-graph visualization approach to show laws and legal aspects in an easier understandable manner. And secondly, a Visual Legal Analytics approach to analyze legal conflicts e.g. on the basis of a business plans. The Visual Legal Analytics approach aims to provide a visual analysis interface to validate the automatically identified legal conflicts resulting from the pre-processing stage with a graphical overview about the derivation down to the law roots and the option to check the original sources to get further details. At the end analyst can so verify conflicts as relevant and resolve it by advancing e.g. the business plan or as irrelevant. An evaluation performed with lawyers has proofed our approach. |
2018 |
28. | Kawa Nazemi; Dirk Burkhardt Juxtaposing Visual Layouts – An Approach for Solving Analytical and Exploratory Tasks through Arranging Visual Interfaces Inproceedings In: A. G. Bruzzone; Egils Ginters; E. G. Mendívil; J. M. Guitierrez; F. Longo (Ed.): The 4th International Conference of the Virtual and Augmented Reality in Education, I3M, 2018, ISBN: 978-88-85741-21-8. @inproceedings{Nazemi2018b,
title = {Juxtaposing Visual Layouts – An Approach for Solving Analytical and Exploratory Tasks through Arranging Visual Interfaces},
author = {Kawa Nazemi and Dirk Burkhardt},
editor = {A. G. Bruzzone and Egils Ginters and E. G. Mendívil and J. M. Guitierrez and F. Longo},
doi = {10.5281/zenodo.2542952},
isbn = {978-88-85741-21-8},
year = {2018},
date = {2018-09-18},
booktitle = {The 4th International Conference of the Virtual and Augmented Reality in Education},
publisher = {I3M},
abstract = {Interactive visualization and visual analytics systems enables solving a variety of tasks. Starting with simple search tasks for outliers, anomalies etc. in data to analytical comparisons, information visualizations may lead to a faster and more precise solving of tasks. There exist a variety of methods to support users in the process of task solving, e.g. superimposing, juxtaposing or partitioning complex visual structures. Commonly all these methods make use of a single data source that is visualized at the same time. We propose in this paper an approach that goes beyond the established methods and enables visualizing different databases, data-sets and sub-sets of data with juxtaposed visual interfaces. Our approach should be seen as an expandable method. Our main contributions are an in-depth analysis of visual task models and an approach for juxtaposing visual layouts as visual interfaces to enable solving complex tasks.},
keywords = {Human Factors, Human-centered user interfaces, Human-computer interaction (HCI), Information visualization, Visual analytics},
pubstate = {published},
tppubtype = {inproceedings}
}
Interactive visualization and visual analytics systems enables solving a variety of tasks. Starting with simple search tasks for outliers, anomalies etc. in data to analytical comparisons, information visualizations may lead to a faster and more precise solving of tasks. There exist a variety of methods to support users in the process of task solving, e.g. superimposing, juxtaposing or partitioning complex visual structures. Commonly all these methods make use of a single data source that is visualized at the same time. We propose in this paper an approach that goes beyond the established methods and enables visualizing different databases, data-sets and sub-sets of data with juxtaposed visual interfaces. Our approach should be seen as an expandable method. Our main contributions are an in-depth analysis of visual task models and an approach for juxtaposing visual layouts as visual interfaces to enable solving complex tasks. |
27. | Dirk Burkhardt; Kawa Nazemi Visualizing Law - A Norm-Graph Visualization Approach based on Semantic Legal Data Inproceedings In: The 4th International Conference of the Virtual and Augmented Reality in Education, I3M, 2018, ISBN: 978-88-85741-21-8. @inproceedings{Burkhardt2018,
title = {Visualizing Law - A Norm-Graph Visualization Approach based on Semantic Legal Data},
author = {Dirk Burkhardt and Kawa Nazemi},
doi = {10.5281/zenodo.2543729},
isbn = {978-88-85741-21-8},
year = {2018},
date = {2018-09-16},
booktitle = {The 4th International Conference of the Virtual and Augmented Reality in Education},
publisher = {I3M},
abstract = {Laws or in general legal documents regulate a wide range of our daily life and also define the borders of business models and commercial services. However, legal text and laws are almost hard to understand. From other domains it is already known that visualizations can help understanding complex aspects easier. In fact, in this paper we introduce a new approach to visualize legal texts in a Norm-graph visualization. In the developed Norm-graph visualization it is possible to show major aspects of laws and make it easier for users to understand it. The Norm-graph is based on semantic legal data, a so called Legal-Concept-Ontology.},
keywords = {Human Factors, Human-computer interaction (HCI), Information visualization, Semantics visualization, Visual analytics},
pubstate = {published},
tppubtype = {inproceedings}
}
Laws or in general legal documents regulate a wide range of our daily life and also define the borders of business models and commercial services. However, legal text and laws are almost hard to understand. From other domains it is already known that visualizations can help understanding complex aspects easier. In fact, in this paper we introduce a new approach to visualize legal texts in a Norm-graph visualization. In the developed Norm-graph visualization it is possible to show major aspects of laws and make it easier for users to understand it. The Norm-graph is based on semantic legal data, a so called Legal-Concept-Ontology. |
2017 |
26. | Dirk Burkhardt; Sachin Pattan; Kawa Nazemi; Arjan Kuijper Search Intention Analysis for Task- and User-Centered Visualization in Big Data Applications Journal Article In: Procedia Computer Science, vol. 104, pp. 539 - 547, 2017, ISSN: 1877-0509, (ICTE 2016, Riga Technical University, Latvia). @article{Burkhardt2017c,
title = {Search Intention Analysis for Task- and User-Centered Visualization in Big Data Applications},
author = {Dirk Burkhardt and Sachin Pattan and Kawa Nazemi and Arjan Kuijper},
doi = {10.1016/j.procs.2017.01.170},
issn = {1877-0509},
year = {2017},
date = {2017-12-01},
urldate = {2017-12-01},
journal = {Procedia Computer Science},
volume = {104},
pages = {539 - 547},
abstract = {A new approach for classifying users’ search intentions is described in this paper. The approach uses the parameters: word frequency, query length and entity matching for distinguishing the user's query into exploratory, targeted and analysis search. The approach focuses mainly on word frequency analysis, where different sources for word frequency data are considered such as the Wortschatz frequency service by the University of Leipzig and the Microsoft Ngram service (now part of the Microsoft Cognitive Services). The model is evaluated with the help of a survey tool and few machine learning techniques. The survey was conducted with more than one hundred users and on evaluating the model with the collected data, the results are satisfactory. In big data applications the search intention analysis can be used to identify the purpose of a performed search, to provide an optimal initially set of visualizations that respects the intended task of the user to work with the result data.},
note = {ICTE 2016, Riga Technical University, Latvia},
keywords = {Information visualization, Intelligent Systems, User behavior, User Interactions, User Interface, User-centered design, Visual analytics},
pubstate = {published},
tppubtype = {article}
}
A new approach for classifying users’ search intentions is described in this paper. The approach uses the parameters: word frequency, query length and entity matching for distinguishing the user's query into exploratory, targeted and analysis search. The approach focuses mainly on word frequency analysis, where different sources for word frequency data are considered such as the Wortschatz frequency service by the University of Leipzig and the Microsoft Ngram service (now part of the Microsoft Cognitive Services). The model is evaluated with the help of a survey tool and few machine learning techniques. The survey was conducted with more than one hundred users and on evaluating the model with the collected data, the results are satisfactory. In big data applications the search intention analysis can be used to identify the purpose of a performed search, to provide an optimal initially set of visualizations that respects the intended task of the user to work with the result data. |
25. | Dirk Burkhardt; Kawa Nazemi Informationsvisualisierung und Visual Analytics zur Unterstützung von E-Government Prozessen Inproceedings In: Korinna Bade; Matthias Pietsch; Susanne Raabe; Lars Schütz (Ed.): Technologische Trends im Spannungsfeld von Beteiligung – Entscheidung – Planung, pp. 29–38, Shaker Verlag, Aachen, Germany, 2017, ISBN: 978-3844054392. @inproceedings{Burkhardt2017b,
title = {Informationsvisualisierung und Visual Analytics zur Unterstützung von E-Government Prozessen},
author = {Dirk Burkhardt and Kawa Nazemi},
editor = {Korinna Bade and Matthias Pietsch and Susanne Raabe and Lars Schütz},
url = {https://www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=8&ISBN=978-3-8440-5439-2&search=yes, Publisher Site
https://dx.doi.org/10.2370/9783844054392, doi:10.2370/9783844054392 (Full Proceedings)},
doi = {10.5281/zenodo.2576074},
isbn = {978-3844054392},
year = {2017},
date = {2017-01-05},
booktitle = {Technologische Trends im Spannungsfeld von Beteiligung – Entscheidung – Planung},
pages = {29--38},
publisher = {Shaker Verlag},
address = {Aachen, Germany},
abstract = {Politische und gesellschaftliche Prozesse werden durch Informationen sehr stark geprägt, wie auch die jüngsten Ereignisse aufzeigen. Diese Informationen können, trotz enormer Fortschritte, nicht immer aus den sehr großen, heterogenen und verteilten Daten entnommen werden. „Big Data“ stellt somit auch in der öffentlichen Verwaltung eine immer größere Herausforderung dar. Sowohl durch eine umfangreiche Erhebung von Statistiken, als auch durch Dokumente wie Berichte und Studien, wachsen in Behörden die zu bewältigenden Informationsaufgaben. Darüber hinaus spielt die Berücksichtigung von Bürgermeinungen, vor allem auf kommunaler Ebene, eine immer größere Rolle. Eine Auswertung ohne moderne Informationstechnik ist dabei kaum mehr möglich. Damit aber aus diesen Daten tatsächlich die relevanten Informationen extrahiert werden, bedarf es Informationsvisualisierung und Visual Analytics Systeme die sehr detaillierte, aber dennoch einfache und schnelle Analysen für den Menschen erlauben. Dies stellt aber sehr hohe Anforderungen an die visuellen Systeme, da sie gleichzeitig auch den Nutzer und dessen Fähigkeiten berücksichtigen müssen.},
keywords = {eGovernance, Information visualization, Visual analytics},
pubstate = {published},
tppubtype = {inproceedings}
}
Politische und gesellschaftliche Prozesse werden durch Informationen sehr stark geprägt, wie auch die jüngsten Ereignisse aufzeigen. Diese Informationen können, trotz enormer Fortschritte, nicht immer aus den sehr großen, heterogenen und verteilten Daten entnommen werden. „Big Data“ stellt somit auch in der öffentlichen Verwaltung eine immer größere Herausforderung dar. Sowohl durch eine umfangreiche Erhebung von Statistiken, als auch durch Dokumente wie Berichte und Studien, wachsen in Behörden die zu bewältigenden Informationsaufgaben. Darüber hinaus spielt die Berücksichtigung von Bürgermeinungen, vor allem auf kommunaler Ebene, eine immer größere Rolle. Eine Auswertung ohne moderne Informationstechnik ist dabei kaum mehr möglich. Damit aber aus diesen Daten tatsächlich die relevanten Informationen extrahiert werden, bedarf es Informationsvisualisierung und Visual Analytics Systeme die sehr detaillierte, aber dennoch einfache und schnelle Analysen für den Menschen erlauben. Dies stellt aber sehr hohe Anforderungen an die visuellen Systeme, da sie gleichzeitig auch den Nutzer und dessen Fähigkeiten berücksichtigen müssen. |