2. | Kawa Nazemi Artificial Intelligence in Visual Analytics Konferenzbeitrag In: Proceedings of the 27th International Conference Information Visualisation (IV2023), Best Paper Award, S. 230 - 237, IEEE CPS, 2023. @inproceedings{Nazemi2023,
title = {Artificial Intelligence in Visual Analytics},
author = {Kawa Nazemi},
doi = {10.1109/IV60283.2023.00048},
year = {2023},
date = {2023-11-30},
urldate = {2023-11-30},
booktitle = {Proceedings of the 27th International Conference Information Visualisation (IV2023), Best Paper Award},
journal = {Proceedings of the 27th International Conference Information Visualisation (IV2023) - Best Paper Award-},
pages = {230 - 237},
publisher = {IEEE CPS},
abstract = {Visual Analytics that combines automated methods with information visualization has emerged as a powerful approach to analytical reasoning. The integration of artificial intelligence techniques into Visual Analytics has enhanced its capabilities but also presents challenges related to interpretability, explainability, and decision-making processes. Visual Analytics may use artificial intelligence methods to provide enhanced and more powerful analytical reasoning capabilities. Furthermore, Visual Analytics can be used to interpret black-box artificial intelligence models and provide a visual explanation of those models. In this paper, we provide an overview of the state-of-the-art of artificial intelligence techniques used in Visual Analytics, focusing on both explainable artificial intelligence in Visual Analytics and the human knowledge generation process through Visual Analytics. We review explainable artificial intelligence approaches in Visual Analytics and propose a revised Visual Analytics model for Explainable artificial intelligence based on an existing model. We then conduct a screening review of artificial intelligence methods in Visual Analytics from two time periods to highlight recently used artificial intelligence approaches in Visual Analytics. Based on this review, we propose a revised task model for tasks in Visual Analytics. Our contributions include a state-of-the-art review of explainable artificial intelligence in Visual Analytics, a revised model for creating explainable artificial intelligence through Visual Analytics, a screening review of recent artificial intelligence methods in Visual Analytics, and a revised task model for generic tasks in Visual Analytics.},
keywords = {Artificial Intelligence, Visual Analytical Reasoning, Visual analytics, Visual Tasks},
pubstate = {published},
tppubtype = {inproceedings}
}
Visual Analytics that combines automated methods with information visualization has emerged as a powerful approach to analytical reasoning. The integration of artificial intelligence techniques into Visual Analytics has enhanced its capabilities but also presents challenges related to interpretability, explainability, and decision-making processes. Visual Analytics may use artificial intelligence methods to provide enhanced and more powerful analytical reasoning capabilities. Furthermore, Visual Analytics can be used to interpret black-box artificial intelligence models and provide a visual explanation of those models. In this paper, we provide an overview of the state-of-the-art of artificial intelligence techniques used in Visual Analytics, focusing on both explainable artificial intelligence in Visual Analytics and the human knowledge generation process through Visual Analytics. We review explainable artificial intelligence approaches in Visual Analytics and propose a revised Visual Analytics model for Explainable artificial intelligence based on an existing model. We then conduct a screening review of artificial intelligence methods in Visual Analytics from two time periods to highlight recently used artificial intelligence approaches in Visual Analytics. Based on this review, we propose a revised task model for tasks in Visual Analytics. Our contributions include a state-of-the-art review of explainable artificial intelligence in Visual Analytics, a revised model for creating explainable artificial intelligence through Visual Analytics, a screening review of recent artificial intelligence methods in Visual Analytics, and a revised task model for generic tasks in Visual Analytics. |
1. | Kawa Nazemi; Dirk Burkhardt Visual analytical dashboards for comparative analytical tasks – a case study on mobility and transportation Artikel In: ICTE in Transportation and Logistics 2018 (ICTE 2018), Bd. 149, S. 138-150, 2019, ISSN: 1877-0509. @article{Nazemi2019,
title = {Visual analytical dashboards for comparative analytical tasks – a case study on mobility and transportation},
author = {Kawa Nazemi and Dirk Burkhardt},
url = {http://www.sciencedirect.com/science/article/pii/S1877050919301243, Link to Publisher},
doi = {10.1016/j.procs.2019.01.117},
issn = {1877-0509},
year = {2019},
date = {2019-01-01},
journal = {ICTE in Transportation and Logistics 2018 (ICTE 2018)},
volume = {149},
pages = {138-150},
series = {Procedia Computer Science},
abstract = {Mobility, logistics and transportation are emerging fields of research and application. Humans’ mobility behavior plays an increasing role for societal challenges. Beside the societal challenges these areas are strongly related to technologies and innovations. Gathering information about emerging technologies plays an increasing role for the entire research in these areas. Humans’ information processing can be strongly supported by Visual Analytics that combines automatic modelling and interactive visualizations. The juxtapose orchestration of interactive visualization enables gathering more information in a shorter time. We propose in this paper an approach that goes beyond the established methods of dashboarding and enables visualizing different databases, data-sets and sub-sets of data with juxtaposed visual interfaces. Our approach should be seen as an expandable method. Our main contributions are an in-depth analysis of visual task models and an approach for juxtaposing visual layouts as visual dashboards to enable solving complex tasks. We illustrate our main outcome through a case study that investigates the area of mobility and illustrates how complex analytical tasks can be performed easily by combining different visual interfaces.},
keywords = {Data Analytics, Information visualization, Mobility, Prediction, Transportation, Visual analytics, Visual Interfaces, Visual Tasks},
pubstate = {published},
tppubtype = {article}
}
Mobility, logistics and transportation are emerging fields of research and application. Humans’ mobility behavior plays an increasing role for societal challenges. Beside the societal challenges these areas are strongly related to technologies and innovations. Gathering information about emerging technologies plays an increasing role for the entire research in these areas. Humans’ information processing can be strongly supported by Visual Analytics that combines automatic modelling and interactive visualizations. The juxtapose orchestration of interactive visualization enables gathering more information in a shorter time. We propose in this paper an approach that goes beyond the established methods of dashboarding and enables visualizing different databases, data-sets and sub-sets of data with juxtaposed visual interfaces. Our approach should be seen as an expandable method. Our main contributions are an in-depth analysis of visual task models and an approach for juxtaposing visual layouts as visual dashboards to enable solving complex tasks. We illustrate our main outcome through a case study that investigates the area of mobility and illustrates how complex analytical tasks can be performed easily by combining different visual interfaces. |