2023 |
5. | Kawa Nazemi Artificial Intelligence in Visual Analytics Konferenzbeitrag In: Proceedings of the 27th International Conference Information Visualisation (IV2023), Best Paper Award, S. 230 - 237, IEEE CPS, 2023. @inproceedings{Nazemi2023,
title = {Artificial Intelligence in Visual Analytics},
author = {Kawa Nazemi},
doi = {10.1109/IV60283.2023.00048},
year = {2023},
date = {2023-11-30},
urldate = {2023-11-30},
booktitle = {Proceedings of the 27th International Conference Information Visualisation (IV2023), Best Paper Award},
journal = {Proceedings of the 27th International Conference Information Visualisation (IV2023) - Best Paper Award-},
pages = {230 - 237},
publisher = {IEEE CPS},
abstract = {Visual Analytics that combines automated methods with information visualization has emerged as a powerful approach to analytical reasoning. The integration of artificial intelligence techniques into Visual Analytics has enhanced its capabilities but also presents challenges related to interpretability, explainability, and decision-making processes. Visual Analytics may use artificial intelligence methods to provide enhanced and more powerful analytical reasoning capabilities. Furthermore, Visual Analytics can be used to interpret black-box artificial intelligence models and provide a visual explanation of those models. In this paper, we provide an overview of the state-of-the-art of artificial intelligence techniques used in Visual Analytics, focusing on both explainable artificial intelligence in Visual Analytics and the human knowledge generation process through Visual Analytics. We review explainable artificial intelligence approaches in Visual Analytics and propose a revised Visual Analytics model for Explainable artificial intelligence based on an existing model. We then conduct a screening review of artificial intelligence methods in Visual Analytics from two time periods to highlight recently used artificial intelligence approaches in Visual Analytics. Based on this review, we propose a revised task model for tasks in Visual Analytics. Our contributions include a state-of-the-art review of explainable artificial intelligence in Visual Analytics, a revised model for creating explainable artificial intelligence through Visual Analytics, a screening review of recent artificial intelligence methods in Visual Analytics, and a revised task model for generic tasks in Visual Analytics.},
keywords = {Artificial Intelligence, Visual Analytical Reasoning, Visual analytics, Visual Tasks},
pubstate = {published},
tppubtype = {inproceedings}
}
Visual Analytics that combines automated methods with information visualization has emerged as a powerful approach to analytical reasoning. The integration of artificial intelligence techniques into Visual Analytics has enhanced its capabilities but also presents challenges related to interpretability, explainability, and decision-making processes. Visual Analytics may use artificial intelligence methods to provide enhanced and more powerful analytical reasoning capabilities. Furthermore, Visual Analytics can be used to interpret black-box artificial intelligence models and provide a visual explanation of those models. In this paper, we provide an overview of the state-of-the-art of artificial intelligence techniques used in Visual Analytics, focusing on both explainable artificial intelligence in Visual Analytics and the human knowledge generation process through Visual Analytics. We review explainable artificial intelligence approaches in Visual Analytics and propose a revised Visual Analytics model for Explainable artificial intelligence based on an existing model. We then conduct a screening review of artificial intelligence methods in Visual Analytics from two time periods to highlight recently used artificial intelligence approaches in Visual Analytics. Based on this review, we propose a revised task model for tasks in Visual Analytics. Our contributions include a state-of-the-art review of explainable artificial intelligence in Visual Analytics, a revised model for creating explainable artificial intelligence through Visual Analytics, a screening review of recent artificial intelligence methods in Visual Analytics, and a revised task model for generic tasks in Visual Analytics. |
2022 |
4. | Lukas Kaupp; Kawa Nazemi; Bernhard Humm Context-Aware Diagnosis in Smart Manufacturing: TAOISM, An Industry 4.0-Ready Visual Analytics Model Buchkapitel In: Boris Kovalerchuk; Kawa Nazemi; Răzvan Andonie; Nuno Datia; Ebad Banissi (Hrsg.): Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery, S. 403–436, Springer International Publishing, Cham, 2022, ISBN: 978-3-030-93119-3. @inbook{Kaupp2022,
title = {Context-Aware Diagnosis in Smart Manufacturing: TAOISM, An Industry 4.0-Ready Visual Analytics Model},
author = {Lukas Kaupp and Kawa Nazemi and Bernhard Humm},
editor = {Boris Kovalerchuk and Kawa Nazemi and Răzvan Andonie and Nuno Datia and Ebad Banissi},
doi = {10.1007/978-3-030-93119-3_16},
isbn = {978-3-030-93119-3},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
booktitle = {Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery},
pages = {403--436},
publisher = {Springer International Publishing},
address = {Cham},
abstract = {The integration of cyber-physical systems accelerates Industry 4.0. Smart factories become more and more complex, with novel connections, relationships, and dependencies. Consequently, complexity also rises with the vast amount of data. While acquiring data from all the involved systems and protocols remains challenging, the assessment and reasoning of information are complex for tasks like fault detection and diagnosis. Furthermore, through the risen complexity of smart manufacturing, the diagnosis process relies even more on the current situation, the context. Current Visual Analytics models prevail only a vague definition of context. This chapter presents an updated and extended version of the TAOISM Visual Analytics model based on our previous work. The model defines the context in smart manufacturing that enables context-aware diagnosis and analysis. Additionally, we extend our model in contrast to our previous work with context hierarchies, an applied use case on open-source data, transformation strategies, an algorithm to acquire context information automatically and present a concept of context-based information aggregation as well as a test of context-aware diagnosis with latest advances in neural networks. We fuse methodologies, algorithms, and specifications of both vital research fields, Visual Analytics and Smart Manufacturing, together with our previous findings to build a living Visual Analytics model open for future research.},
keywords = {Artificial Intelligence, Machine Leanring, Machine Learning, mobility indicators for visual analytics, smart factory, Smart manufacturing, Visual Analytical Reasoning, Visual analytics, Visual Knowledge Discovery},
pubstate = {published},
tppubtype = {inbook}
}
The integration of cyber-physical systems accelerates Industry 4.0. Smart factories become more and more complex, with novel connections, relationships, and dependencies. Consequently, complexity also rises with the vast amount of data. While acquiring data from all the involved systems and protocols remains challenging, the assessment and reasoning of information are complex for tasks like fault detection and diagnosis. Furthermore, through the risen complexity of smart manufacturing, the diagnosis process relies even more on the current situation, the context. Current Visual Analytics models prevail only a vague definition of context. This chapter presents an updated and extended version of the TAOISM Visual Analytics model based on our previous work. The model defines the context in smart manufacturing that enables context-aware diagnosis and analysis. Additionally, we extend our model in contrast to our previous work with context hierarchies, an applied use case on open-source data, transformation strategies, an algorithm to acquire context information automatically and present a concept of context-based information aggregation as well as a test of context-aware diagnosis with latest advances in neural networks. We fuse methodologies, algorithms, and specifications of both vital research fields, Visual Analytics and Smart Manufacturing, together with our previous findings to build a living Visual Analytics model open for future research. |
3. | Boris Kovalerchuk; Kawa Nazemi; Răzvan Andonie; Nuno Datia; Ebad Banissi (Hrsg.) Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery Buch Springer Nature, Cham, 2022, ISBN: 978-3-030-93118-6. @book{Kovalerchuk2022,
title = {Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery},
editor = {Boris Kovalerchuk and Kawa Nazemi and Răzvan Andonie and Nuno Datia and Ebad Banissi},
doi = {10.1007/978-3-030-93119-3},
isbn = {978-3-030-93118-6},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
publisher = {Springer Nature},
address = {Cham},
series = {Studies in Computational Intelligence},
abstract = {This book is devoted to the emerging field of integrated visual knowledge discovery that combines advances in artificial intelligence/machine learning and visualization/visual analytic. A long-standing challenge of artificial intelligence (AI) and machine learning (ML) is explaining models to humans, especially for live-critical applications like health care. A model explanation is fundamentally human activity, not only an algorithmic one. As current deep learning studies demonstrate, it makes the paradigm based on the visual methods critically important to address this challenge. In general, visual approaches are critical for discovering explainable high-dimensional patterns in all types in high-dimensional data offering "n-D glasses," where preserving high-dimensional data properties and relations in visualizations is a major challenge. The current progress opens a fantastic opportunity in this domain.
This book is a collection of 25 extended works of over 70 scholars presented at AI and visual analytics related symposia at the recent International Information Visualization Conferences with the goal of moving this integration to the next level. The sections of this book cover integrated systems, supervised learning, unsupervised learning, optimization, and evaluation of visualizations.
The intended audience for this collection includes those developing and using emerging AI/machine learning and visualization methods. Scientists, practitioners, and students can find multiple examples of the current integration of AI/machine learning and visualization for visual knowledge discovery. The book provides a vision of future directions in this domain. New researchers will find here an inspiration to join the profession and to be involved for further development. Instructors in AI/ML and visualization classes can use it as a supplementary source in their undergraduate and graduate classes.},
key = {SP2022},
keywords = {Artificial Intelligence, Computational Intelligence, Machine Learning, Visual Analytical Reasoning, Visual analytics, Visual Knowledge Discovery},
pubstate = {published},
tppubtype = {book}
}
This book is devoted to the emerging field of integrated visual knowledge discovery that combines advances in artificial intelligence/machine learning and visualization/visual analytic. A long-standing challenge of artificial intelligence (AI) and machine learning (ML) is explaining models to humans, especially for live-critical applications like health care. A model explanation is fundamentally human activity, not only an algorithmic one. As current deep learning studies demonstrate, it makes the paradigm based on the visual methods critically important to address this challenge. In general, visual approaches are critical for discovering explainable high-dimensional patterns in all types in high-dimensional data offering "n-D glasses," where preserving high-dimensional data properties and relations in visualizations is a major challenge. The current progress opens a fantastic opportunity in this domain. This book is a collection of 25 extended works of over 70 scholars presented at AI and visual analytics related symposia at the recent International Information Visualization Conferences with the goal of moving this integration to the next level. The sections of this book cover integrated systems, supervised learning, unsupervised learning, optimization, and evaluation of visualizations. The intended audience for this collection includes those developing and using emerging AI/machine learning and visualization methods. Scientists, practitioners, and students can find multiple examples of the current integration of AI/machine learning and visualization for visual knowledge discovery. The book provides a vision of future directions in this domain. New researchers will find here an inspiration to join the profession and to be involved for further development. Instructors in AI/ML and visualization classes can use it as a supplementary source in their undergraduate and graduate classes. |
2. | Kawa Nazemi; Tim Feiter; Lennart B. Sina; Dirk Burkhardt; Alexander Kock Visual Analytics for Strategic Decision Making in Technology Management Buchkapitel In: Boris Kovalerchuk; Kawa Nazemi; Răzvan Andonie; Nuno Datia; Ebad Banissi (Hrsg.): Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery, S. 31–61, Springer International Publishing, Cham, 2022, ISBN: 978-3-030-93119-3. @inbook{Nazemi2022,
title = {Visual Analytics for Strategic Decision Making in Technology Management},
author = {Kawa Nazemi and Tim Feiter and Lennart B. Sina and Dirk Burkhardt and Alexander Kock},
editor = {Boris Kovalerchuk and Kawa Nazemi and Răzvan Andonie and Nuno Datia and Ebad Banissi},
doi = {10.1007/978-3-030-93119-3_2},
isbn = {978-3-030-93119-3},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
booktitle = {Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery},
pages = {31--61},
publisher = {Springer International Publishing},
address = {Cham},
abstract = {Strategic foresight, corporate foresight, and technology management enable firms to detect discontinuous changes early and develop future courses for a more sophisticated market positioning. The enhancements in machine learning and artificial intelligence allow more automatic detection of early trends to create future courses and make strategic decisions. Visual Analytics combines methods of automated data analysis through machine learning methods and interactive visualizations. It enables a far better way to gather insights from a vast amount of data to make a strategic decision. While Visual Analytics got various models and approaches to enable strategic decision-making, the analysis of trends is still a matter of research. The forecasting approaches and involvement of humans in the visual trend analysis process require further investigation that will lead to sophisticated analytical methods. We introduce in this paper a novel model of Visual Analytics for decision-making, particularly for technology management, through early trends from scientific publications. We combine Corporate Foresight and Visual Analytics and propose a machine learning-based Technology Roadmapping based on our previous work.},
keywords = {Artificial Intelligence, Machine Leanring, Visual Analytical Reasoning, Visual analytics, Visual Knowledge Discovery},
pubstate = {published},
tppubtype = {inbook}
}
Strategic foresight, corporate foresight, and technology management enable firms to detect discontinuous changes early and develop future courses for a more sophisticated market positioning. The enhancements in machine learning and artificial intelligence allow more automatic detection of early trends to create future courses and make strategic decisions. Visual Analytics combines methods of automated data analysis through machine learning methods and interactive visualizations. It enables a far better way to gather insights from a vast amount of data to make a strategic decision. While Visual Analytics got various models and approaches to enable strategic decision-making, the analysis of trends is still a matter of research. The forecasting approaches and involvement of humans in the visual trend analysis process require further investigation that will lead to sophisticated analytical methods. We introduce in this paper a novel model of Visual Analytics for decision-making, particularly for technology management, through early trends from scientific publications. We combine Corporate Foresight and Visual Analytics and propose a machine learning-based Technology Roadmapping based on our previous work. |
2019 |
1. | Kawa Nazemi; Dirk Burkhardt Advanced Visual Analytical Reasoning for Technology and Innovation Management (AVARTIM) Sonstige Forschungstag 2019 der Hessischen Hochschulen für Angewandte Wissenschaften (HAW), Frankfurt, Germany, 2019. @misc{Nazemi2019db,
title = {Advanced Visual Analytical Reasoning for Technology and Innovation Management (AVARTIM)},
author = {Kawa Nazemi and Dirk Burkhardt},
url = {https://www.hessen.de/presse/veranstaltung/forschungstag-2019-der-hessischen-hochschulen-fuer-angewandte-wissenschaften, Event Website},
doi = {10.5281/zenodo.3517296},
year = {2019},
date = {2019-10-29},
abstract = {Im Rahmen des Vorhabens soll mit „AVARTIM“ ein softwaregestützter Prozess zum Erkennen und Bewerten von Trends, Markt- und Technologiesignalen entwickelt werden, um den Prozess des Innovations- und Technologiemanagements nachhaltig zu unterstützen. Dabei soll im Rahmen des Vorhabens eine Infrastruktur an der Hochschule Darmstadt aufgebaut werden, die modular ist und somit auf technologische Veränderungen schnell reagieren kann. Die zu entwickelnde Infrastruktur dient hierbei als Vorlaufforschung und Ausgangstechnologie sowohl für den industriellen Einsatz durch und mit den KMU Partnern als auch zur Beantragung von Verbundvorhaben.},
howpublished = {Forschungstag 2019 der Hessischen Hochschulen für Angewandte Wissenschaften (HAW), Frankfurt, Germany},
keywords = {Innovation Management, Technology Management, Trend Analytics, Visual Analytical Reasoning, Visual analytics},
pubstate = {published},
tppubtype = {misc}
}
Im Rahmen des Vorhabens soll mit „AVARTIM“ ein softwaregestützter Prozess zum Erkennen und Bewerten von Trends, Markt- und Technologiesignalen entwickelt werden, um den Prozess des Innovations- und Technologiemanagements nachhaltig zu unterstützen. Dabei soll im Rahmen des Vorhabens eine Infrastruktur an der Hochschule Darmstadt aufgebaut werden, die modular ist und somit auf technologische Veränderungen schnell reagieren kann. Die zu entwickelnde Infrastruktur dient hierbei als Vorlaufforschung und Ausgangstechnologie sowohl für den industriellen Einsatz durch und mit den KMU Partnern als auch zur Beantragung von Verbundvorhaben. |