2023 |
13. | Kawa Nazemi Artificial Intelligence in Visual Analytics Konferenzbeitrag In: Proceedings of the 27th International Conference Information Visualisation (IV2023), Best Paper Award, S. 230 - 237, IEEE CPS, 2023. @inproceedings{Nazemi2023,
title = {Artificial Intelligence in Visual Analytics},
author = {Kawa Nazemi},
doi = {10.1109/IV60283.2023.00048},
year = {2023},
date = {2023-11-30},
urldate = {2023-11-30},
booktitle = {Proceedings of the 27th International Conference Information Visualisation (IV2023), Best Paper Award},
journal = {Proceedings of the 27th International Conference Information Visualisation (IV2023) - Best Paper Award-},
pages = {230 - 237},
publisher = {IEEE CPS},
abstract = {Visual Analytics that combines automated methods with information visualization has emerged as a powerful approach to analytical reasoning. The integration of artificial intelligence techniques into Visual Analytics has enhanced its capabilities but also presents challenges related to interpretability, explainability, and decision-making processes. Visual Analytics may use artificial intelligence methods to provide enhanced and more powerful analytical reasoning capabilities. Furthermore, Visual Analytics can be used to interpret black-box artificial intelligence models and provide a visual explanation of those models. In this paper, we provide an overview of the state-of-the-art of artificial intelligence techniques used in Visual Analytics, focusing on both explainable artificial intelligence in Visual Analytics and the human knowledge generation process through Visual Analytics. We review explainable artificial intelligence approaches in Visual Analytics and propose a revised Visual Analytics model for Explainable artificial intelligence based on an existing model. We then conduct a screening review of artificial intelligence methods in Visual Analytics from two time periods to highlight recently used artificial intelligence approaches in Visual Analytics. Based on this review, we propose a revised task model for tasks in Visual Analytics. Our contributions include a state-of-the-art review of explainable artificial intelligence in Visual Analytics, a revised model for creating explainable artificial intelligence through Visual Analytics, a screening review of recent artificial intelligence methods in Visual Analytics, and a revised task model for generic tasks in Visual Analytics.},
keywords = {Artificial Intelligence, Visual Analytical Reasoning, Visual analytics, Visual Tasks},
pubstate = {published},
tppubtype = {inproceedings}
}
Visual Analytics that combines automated methods with information visualization has emerged as a powerful approach to analytical reasoning. The integration of artificial intelligence techniques into Visual Analytics has enhanced its capabilities but also presents challenges related to interpretability, explainability, and decision-making processes. Visual Analytics may use artificial intelligence methods to provide enhanced and more powerful analytical reasoning capabilities. Furthermore, Visual Analytics can be used to interpret black-box artificial intelligence models and provide a visual explanation of those models. In this paper, we provide an overview of the state-of-the-art of artificial intelligence techniques used in Visual Analytics, focusing on both explainable artificial intelligence in Visual Analytics and the human knowledge generation process through Visual Analytics. We review explainable artificial intelligence approaches in Visual Analytics and propose a revised Visual Analytics model for Explainable artificial intelligence based on an existing model. We then conduct a screening review of artificial intelligence methods in Visual Analytics from two time periods to highlight recently used artificial intelligence approaches in Visual Analytics. Based on this review, we propose a revised task model for tasks in Visual Analytics. Our contributions include a state-of-the-art review of explainable artificial intelligence in Visual Analytics, a revised model for creating explainable artificial intelligence through Visual Analytics, a screening review of recent artificial intelligence methods in Visual Analytics, and a revised task model for generic tasks in Visual Analytics. |
12. | Lennart B. Sina; Cristian A. Secco; Midhad Blazevic; Kawa Nazemi Visual Analytics for Corporate Foresight - A Conceptual Approach Konferenzbeitrag In: Proceedings of the 27th International Conference Information Visualisation (IV2023), S. 244-250, IEEE CPS, 2023. @inproceedings{SinaIV2023,
title = {Visual Analytics for Corporate Foresight - A Conceptual Approach},
author = {Lennart B. Sina and Cristian A. Secco and Midhad Blazevic and Kawa Nazemi},
doi = {10.1109/IV60283.2023.00050},
year = {2023},
date = {2023-11-29},
urldate = {2023-11-29},
booktitle = {Proceedings of the 27th International Conference Information Visualisation (IV2023)},
pages = {244-250},
publisher = {IEEE CPS},
abstract = {Corporate Foresight is a strategic planning process that helps organizations anticipate and prepare for future trends and developments that may impact their operations. It involves analyzing data, identifying potential scenarios, and creating strategies to address them to ensure long-term success and sustainability. Visual Analytics approaches have been introduced to cover parts of the Corporate Foresight process. These concepts present different approaches to integrate machine learning methods and artificial intelligence with interactive visualizations to solve tasks such as identifying emerging trends. A holistic concept for synthesizing Visual Analytics with Corporate Foresight does not exist yet. We propose in this work a holistic Visual Analytics approach that covers the main aspects of Corporate Foresight by including strategic management and considers different organizational forms. Our model goes beyond the state-of-the-art by providing, besides foresight also, hindsight and insight. Our main contributions are the revised Visual Analytics model and its proof of concept through implementation as a web-based system with real data.},
keywords = {Artificial Intelligence, Visual analytics},
pubstate = {published},
tppubtype = {inproceedings}
}
Corporate Foresight is a strategic planning process that helps organizations anticipate and prepare for future trends and developments that may impact their operations. It involves analyzing data, identifying potential scenarios, and creating strategies to address them to ensure long-term success and sustainability. Visual Analytics approaches have been introduced to cover parts of the Corporate Foresight process. These concepts present different approaches to integrate machine learning methods and artificial intelligence with interactive visualizations to solve tasks such as identifying emerging trends. A holistic concept for synthesizing Visual Analytics with Corporate Foresight does not exist yet. We propose in this work a holistic Visual Analytics approach that covers the main aspects of Corporate Foresight by including strategic management and considers different organizational forms. Our model goes beyond the state-of-the-art by providing, besides foresight also, hindsight and insight. Our main contributions are the revised Visual Analytics model and its proof of concept through implementation as a web-based system with real data. |
11. | Ebad Banissi; Harri Siirtola; Anna Ursyn; João Moura Pires; Nuno Datia; Kawa Nazemi; Boris Kovalerchuk; Razvan Andonie; Minoru Nakayama; Marco Temperini; Filippo Sciarrone; Quang Vinh Nguyen; Mabule Samuel Mabakane; Adrian Rusu; Urska Cvek; Marjan Trutschl; Heimo Mueller; Rita Francese; Fatma Boua-li; Gilles Venturini (Hrsg.) Proceedings of 2023 27th International Conference Information Visualisation Konferenzbericht 2023, ISBN: 979-8-3503-4161-4. @proceedings{Banissi2023,
title = {Proceedings of 2023 27th International Conference Information Visualisation},
editor = {Ebad Banissi and Harri Siirtola and Anna Ursyn and João Moura Pires and Nuno Datia and Kawa Nazemi and Boris Kovalerchuk and Razvan Andonie and Minoru Nakayama and Marco Temperini and Filippo Sciarrone and Quang Vinh Nguyen and Mabule Samuel Mabakane and Adrian Rusu and Urska Cvek and Marjan Trutschl and Heimo Mueller and Rita Francese and Fatma Boua-li and Gilles Venturini },
doi = {10.1109/IV60283.2023.00001},
isbn = {979-8-3503-4161-4},
year = {2023},
date = {2023-11-01},
urldate = {2023-11-01},
issue = {IV2023},
abstract = {Do aspects of our lives depend on and are driven by data, information, knowledge, user experience, and cultural influences in the current information era? Does the infrastructure of any information-dependent society rely on the quality of data, information, and analysis of such entities from past and present and projected future activities and, most importantly, how it is intended to be applied? Information Visualization, Analytics, Machine Learning, Artificial Intelligence, and Application domains are state-of-the-art developments that effectively enhance understanding of these well-established drivers. Several key interdependent variables are emerging that are becoming the focus of scientific activities, such as Information and Data Science. Aspects tightly tie raw data (origin, autonomous capture, classification, incompleteness, impurity, filtering) and data scale to knowledge acquisition. Its dependencies on the application domain and its evolution steer the next generation of research activities. From raw data to knowledge, processing the relationship between these phases has added new impetus to understanding and communicating these. The tradition of use and communication by visualization is deep-rooted. It helps us investigate new meanings for the humanities, history of art, design, human factors, and user experience, leading to knowledge discoveries and hypothesis analysis. Modern-day computer-aided analytics and visualization have added momentum in developing tools that exploit metaphor-driven techniques within many applied domains to simply storytelling through data. The methods are developed beyond visualization to simplify the complexities, reveal ambiguity, and work with incompleteness. The next phase of this evolving field is to understand uncertainty, risk analysis, and tapping into unknowns; this uncertainty is built into all stages of the processes, from raw data to the knowledge acquisition stage. But there is a new twist: fast-developing generative AI with ever-increasing access to data outsmarting humans in decision-making. A new evolutionary step in the human journey, no doubt.},
keywords = {Artificial Intelligence, Data Analytics, Data Science, Visual analytics, Visual Knowledge Discovery},
pubstate = {published},
tppubtype = {proceedings}
}
Do aspects of our lives depend on and are driven by data, information, knowledge, user experience, and cultural influences in the current information era? Does the infrastructure of any information-dependent society rely on the quality of data, information, and analysis of such entities from past and present and projected future activities and, most importantly, how it is intended to be applied? Information Visualization, Analytics, Machine Learning, Artificial Intelligence, and Application domains are state-of-the-art developments that effectively enhance understanding of these well-established drivers. Several key interdependent variables are emerging that are becoming the focus of scientific activities, such as Information and Data Science. Aspects tightly tie raw data (origin, autonomous capture, classification, incompleteness, impurity, filtering) and data scale to knowledge acquisition. Its dependencies on the application domain and its evolution steer the next generation of research activities. From raw data to knowledge, processing the relationship between these phases has added new impetus to understanding and communicating these. The tradition of use and communication by visualization is deep-rooted. It helps us investigate new meanings for the humanities, history of art, design, human factors, and user experience, leading to knowledge discoveries and hypothesis analysis. Modern-day computer-aided analytics and visualization have added momentum in developing tools that exploit metaphor-driven techniques within many applied domains to simply storytelling through data. The methods are developed beyond visualization to simplify the complexities, reveal ambiguity, and work with incompleteness. The next phase of this evolving field is to understand uncertainty, risk analysis, and tapping into unknowns; this uncertainty is built into all stages of the processes, from raw data to the knowledge acquisition stage. But there is a new twist: fast-developing generative AI with ever-increasing access to data outsmarting humans in decision-making. A new evolutionary step in the human journey, no doubt. |
2022 |
10. | Lukas Kaupp; Kawa Nazemi; Bernhard Humm Evaluation of the Flourish Dashboard for Context-Aware Fault Diagnosis in Industry 4.0 Smart Factories Artikel In: Electronics, Bd. 11, Nr. 23, 2022, ISSN: 2079-9292. @article{electronics11233942,
title = {Evaluation of the Flourish Dashboard for Context-Aware Fault Diagnosis in Industry 4.0 Smart Factories},
author = { Lukas Kaupp and Kawa Nazemi and Bernhard Humm},
editor = {Kawa Nazemi and Egils Ginters and Michael Bazant},
doi = {10.3390/electronics11233942},
issn = {2079-9292},
year = {2022},
date = {2022-11-01},
urldate = {2022-11-01},
journal = {Electronics},
volume = {11},
number = {23},
abstract = {Cyber-physical systems become more complex, therewith production lines become more complex in the smart factory. Every employed system produces high amounts of data with unknown dependencies and relationships, making incident reasoning difficult. Context-aware fault diagnosis can unveil such relationships on different levels. A fault diagnosis application becomes context-aware when the current production situation is used in the reasoning process. We have already published TAOISM, a visual analytics model defining the context-aware fault diagnosis process for the Industry 4.0 domain. In this article, we propose the Flourish dashboard for context-aware fault diagnosis. The eponymous visualization Flourish is a first implementation of a context-displaying visualization for context-aware fault diagnosis in an Industry 4.0 setting. We conducted a questionnaire and interview-based bilingual evaluation with two user groups based on contextual faults recorded in a production-equal smart factory. Both groups provided qualitative feedback after using the Flourish dashboard. We positively evaluate the Flourish dashboard as an essential part of the context-aware fault diagnosis and discuss our findings, open gaps, and future research directions.},
keywords = {Artificial Intelligence, Case Study, Data Analytics, Data Science, Data Visualization, Decision Making, Decision Support Systems, Evaluation, smart factory, Smart manufacturing, Visual analytics},
pubstate = {published},
tppubtype = {article}
}
Cyber-physical systems become more complex, therewith production lines become more complex in the smart factory. Every employed system produces high amounts of data with unknown dependencies and relationships, making incident reasoning difficult. Context-aware fault diagnosis can unveil such relationships on different levels. A fault diagnosis application becomes context-aware when the current production situation is used in the reasoning process. We have already published TAOISM, a visual analytics model defining the context-aware fault diagnosis process for the Industry 4.0 domain. In this article, we propose the Flourish dashboard for context-aware fault diagnosis. The eponymous visualization Flourish is a first implementation of a context-displaying visualization for context-aware fault diagnosis in an Industry 4.0 setting. We conducted a questionnaire and interview-based bilingual evaluation with two user groups based on contextual faults recorded in a production-equal smart factory. Both groups provided qualitative feedback after using the Flourish dashboard. We positively evaluate the Flourish dashboard as an essential part of the context-aware fault diagnosis and discuss our findings, open gaps, and future research directions. |
9. | Lukas Kaupp; Bernhard Humm; Kawa Nazemi; Stephan Simons Autoencoder-Ensemble-Based Unsupervised Selection of Production-Relevant Variables for Context-Aware Fault Diagnosis Artikel In: Sensors, Bd. 22, Nr. 21, 2022, ISSN: 1424-8220. @article{s22218259,
title = {Autoencoder-Ensemble-Based Unsupervised Selection of Production-Relevant Variables for Context-Aware Fault Diagnosis},
author = {Lukas Kaupp and Bernhard Humm and Kawa Nazemi and Stephan Simons},
doi = {10.3390/s22218259},
issn = {1424-8220},
year = {2022},
date = {2022-10-01},
urldate = {2022-10-01},
journal = {Sensors},
volume = {22},
number = {21},
abstract = {Smart factories are complex; with the increased complexity of employed cyber-physical systems, the complexity evolves further. Cyber-physical systems produce high amounts of data that are hard to capture and challenging to analyze. Real-time recording of all data is not possible due to limited network capabilities. Limited network capabilities are the reason for a chain of faults introduced via active surveillance during fault diagnosis. These introduced faults may slow down production or lead to an outage of the production line. Here, we present a novel approach to automatically select production-relevant shop floor parameters to decrease the number of surveyed variables and, at the same time, maintain quality in fault diagnosis without overloading the network. We were able to achieve higher throughput, mitigate communication losses and prevent the disruption of factory instructions. Our approach uses an autoencoder ensemble via minority voting to differentiate between normal—always on—variables and production variables that may yield a higher entropy. Our approach has been tested in a production-equal smart factory and was cross-validated by a domain expert.},
keywords = {Artificial Intelligence, Machine Leanring, Machine Learning, smart factory, Smart manufacturing},
pubstate = {published},
tppubtype = {article}
}
Smart factories are complex; with the increased complexity of employed cyber-physical systems, the complexity evolves further. Cyber-physical systems produce high amounts of data that are hard to capture and challenging to analyze. Real-time recording of all data is not possible due to limited network capabilities. Limited network capabilities are the reason for a chain of faults introduced via active surveillance during fault diagnosis. These introduced faults may slow down production or lead to an outage of the production line. Here, we present a novel approach to automatically select production-relevant shop floor parameters to decrease the number of surveyed variables and, at the same time, maintain quality in fault diagnosis without overloading the network. We were able to achieve higher throughput, mitigate communication losses and prevent the disruption of factory instructions. Our approach uses an autoencoder ensemble via minority voting to differentiate between normal—always on—variables and production variables that may yield a higher entropy. Our approach has been tested in a production-equal smart factory and was cross-validated by a domain expert. |
8. | Lukas Kaupp; Kawa Nazemi; Bernhard Humm Context-Aware Diagnosis in Smart Manufacturing: TAOISM, An Industry 4.0-Ready Visual Analytics Model Buchkapitel In: Boris Kovalerchuk; Kawa Nazemi; Răzvan Andonie; Nuno Datia; Ebad Banissi (Hrsg.): Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery, S. 403–436, Springer International Publishing, Cham, 2022, ISBN: 978-3-030-93119-3. @inbook{Kaupp2022,
title = {Context-Aware Diagnosis in Smart Manufacturing: TAOISM, An Industry 4.0-Ready Visual Analytics Model},
author = {Lukas Kaupp and Kawa Nazemi and Bernhard Humm},
editor = {Boris Kovalerchuk and Kawa Nazemi and Răzvan Andonie and Nuno Datia and Ebad Banissi},
doi = {10.1007/978-3-030-93119-3_16},
isbn = {978-3-030-93119-3},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
booktitle = {Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery},
pages = {403--436},
publisher = {Springer International Publishing},
address = {Cham},
abstract = {The integration of cyber-physical systems accelerates Industry 4.0. Smart factories become more and more complex, with novel connections, relationships, and dependencies. Consequently, complexity also rises with the vast amount of data. While acquiring data from all the involved systems and protocols remains challenging, the assessment and reasoning of information are complex for tasks like fault detection and diagnosis. Furthermore, through the risen complexity of smart manufacturing, the diagnosis process relies even more on the current situation, the context. Current Visual Analytics models prevail only a vague definition of context. This chapter presents an updated and extended version of the TAOISM Visual Analytics model based on our previous work. The model defines the context in smart manufacturing that enables context-aware diagnosis and analysis. Additionally, we extend our model in contrast to our previous work with context hierarchies, an applied use case on open-source data, transformation strategies, an algorithm to acquire context information automatically and present a concept of context-based information aggregation as well as a test of context-aware diagnosis with latest advances in neural networks. We fuse methodologies, algorithms, and specifications of both vital research fields, Visual Analytics and Smart Manufacturing, together with our previous findings to build a living Visual Analytics model open for future research.},
keywords = {Artificial Intelligence, Machine Leanring, Machine Learning, mobility indicators for visual analytics, smart factory, Smart manufacturing, Visual Analytical Reasoning, Visual analytics, Visual Knowledge Discovery},
pubstate = {published},
tppubtype = {inbook}
}
The integration of cyber-physical systems accelerates Industry 4.0. Smart factories become more and more complex, with novel connections, relationships, and dependencies. Consequently, complexity also rises with the vast amount of data. While acquiring data from all the involved systems and protocols remains challenging, the assessment and reasoning of information are complex for tasks like fault detection and diagnosis. Furthermore, through the risen complexity of smart manufacturing, the diagnosis process relies even more on the current situation, the context. Current Visual Analytics models prevail only a vague definition of context. This chapter presents an updated and extended version of the TAOISM Visual Analytics model based on our previous work. The model defines the context in smart manufacturing that enables context-aware diagnosis and analysis. Additionally, we extend our model in contrast to our previous work with context hierarchies, an applied use case on open-source data, transformation strategies, an algorithm to acquire context information automatically and present a concept of context-based information aggregation as well as a test of context-aware diagnosis with latest advances in neural networks. We fuse methodologies, algorithms, and specifications of both vital research fields, Visual Analytics and Smart Manufacturing, together with our previous findings to build a living Visual Analytics model open for future research. |
7. | Boris Kovalerchuk; Kawa Nazemi; Răzvan Andonie; Nuno Datia; Ebad Banissi (Hrsg.) Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery Buch Springer Nature, Cham, 2022, ISBN: 978-3-030-93118-6. @book{Kovalerchuk2022,
title = {Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery},
editor = {Boris Kovalerchuk and Kawa Nazemi and Răzvan Andonie and Nuno Datia and Ebad Banissi},
doi = {10.1007/978-3-030-93119-3},
isbn = {978-3-030-93118-6},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
publisher = {Springer Nature},
address = {Cham},
series = {Studies in Computational Intelligence},
abstract = {This book is devoted to the emerging field of integrated visual knowledge discovery that combines advances in artificial intelligence/machine learning and visualization/visual analytic. A long-standing challenge of artificial intelligence (AI) and machine learning (ML) is explaining models to humans, especially for live-critical applications like health care. A model explanation is fundamentally human activity, not only an algorithmic one. As current deep learning studies demonstrate, it makes the paradigm based on the visual methods critically important to address this challenge. In general, visual approaches are critical for discovering explainable high-dimensional patterns in all types in high-dimensional data offering "n-D glasses," where preserving high-dimensional data properties and relations in visualizations is a major challenge. The current progress opens a fantastic opportunity in this domain.
This book is a collection of 25 extended works of over 70 scholars presented at AI and visual analytics related symposia at the recent International Information Visualization Conferences with the goal of moving this integration to the next level. The sections of this book cover integrated systems, supervised learning, unsupervised learning, optimization, and evaluation of visualizations.
The intended audience for this collection includes those developing and using emerging AI/machine learning and visualization methods. Scientists, practitioners, and students can find multiple examples of the current integration of AI/machine learning and visualization for visual knowledge discovery. The book provides a vision of future directions in this domain. New researchers will find here an inspiration to join the profession and to be involved for further development. Instructors in AI/ML and visualization classes can use it as a supplementary source in their undergraduate and graduate classes.},
key = {SP2022},
keywords = {Artificial Intelligence, Computational Intelligence, Machine Learning, Visual Analytical Reasoning, Visual analytics, Visual Knowledge Discovery},
pubstate = {published},
tppubtype = {book}
}
This book is devoted to the emerging field of integrated visual knowledge discovery that combines advances in artificial intelligence/machine learning and visualization/visual analytic. A long-standing challenge of artificial intelligence (AI) and machine learning (ML) is explaining models to humans, especially for live-critical applications like health care. A model explanation is fundamentally human activity, not only an algorithmic one. As current deep learning studies demonstrate, it makes the paradigm based on the visual methods critically important to address this challenge. In general, visual approaches are critical for discovering explainable high-dimensional patterns in all types in high-dimensional data offering "n-D glasses," where preserving high-dimensional data properties and relations in visualizations is a major challenge. The current progress opens a fantastic opportunity in this domain. This book is a collection of 25 extended works of over 70 scholars presented at AI and visual analytics related symposia at the recent International Information Visualization Conferences with the goal of moving this integration to the next level. The sections of this book cover integrated systems, supervised learning, unsupervised learning, optimization, and evaluation of visualizations. The intended audience for this collection includes those developing and using emerging AI/machine learning and visualization methods. Scientists, practitioners, and students can find multiple examples of the current integration of AI/machine learning and visualization for visual knowledge discovery. The book provides a vision of future directions in this domain. New researchers will find here an inspiration to join the profession and to be involved for further development. Instructors in AI/ML and visualization classes can use it as a supplementary source in their undergraduate and graduate classes. |
6. | Kawa Nazemi; Tim Feiter; Lennart B. Sina; Dirk Burkhardt; Alexander Kock Visual Analytics for Strategic Decision Making in Technology Management Buchkapitel In: Boris Kovalerchuk; Kawa Nazemi; Răzvan Andonie; Nuno Datia; Ebad Banissi (Hrsg.): Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery, S. 31–61, Springer International Publishing, Cham, 2022, ISBN: 978-3-030-93119-3. @inbook{Nazemi2022,
title = {Visual Analytics for Strategic Decision Making in Technology Management},
author = {Kawa Nazemi and Tim Feiter and Lennart B. Sina and Dirk Burkhardt and Alexander Kock},
editor = {Boris Kovalerchuk and Kawa Nazemi and Răzvan Andonie and Nuno Datia and Ebad Banissi},
doi = {10.1007/978-3-030-93119-3_2},
isbn = {978-3-030-93119-3},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
booktitle = {Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery},
pages = {31--61},
publisher = {Springer International Publishing},
address = {Cham},
abstract = {Strategic foresight, corporate foresight, and technology management enable firms to detect discontinuous changes early and develop future courses for a more sophisticated market positioning. The enhancements in machine learning and artificial intelligence allow more automatic detection of early trends to create future courses and make strategic decisions. Visual Analytics combines methods of automated data analysis through machine learning methods and interactive visualizations. It enables a far better way to gather insights from a vast amount of data to make a strategic decision. While Visual Analytics got various models and approaches to enable strategic decision-making, the analysis of trends is still a matter of research. The forecasting approaches and involvement of humans in the visual trend analysis process require further investigation that will lead to sophisticated analytical methods. We introduce in this paper a novel model of Visual Analytics for decision-making, particularly for technology management, through early trends from scientific publications. We combine Corporate Foresight and Visual Analytics and propose a machine learning-based Technology Roadmapping based on our previous work.},
keywords = {Artificial Intelligence, Machine Leanring, Visual Analytical Reasoning, Visual analytics, Visual Knowledge Discovery},
pubstate = {published},
tppubtype = {inbook}
}
Strategic foresight, corporate foresight, and technology management enable firms to detect discontinuous changes early and develop future courses for a more sophisticated market positioning. The enhancements in machine learning and artificial intelligence allow more automatic detection of early trends to create future courses and make strategic decisions. Visual Analytics combines methods of automated data analysis through machine learning methods and interactive visualizations. It enables a far better way to gather insights from a vast amount of data to make a strategic decision. While Visual Analytics got various models and approaches to enable strategic decision-making, the analysis of trends is still a matter of research. The forecasting approaches and involvement of humans in the visual trend analysis process require further investigation that will lead to sophisticated analytical methods. We introduce in this paper a novel model of Visual Analytics for decision-making, particularly for technology management, through early trends from scientific publications. We combine Corporate Foresight and Visual Analytics and propose a machine learning-based Technology Roadmapping based on our previous work. |
2021 |
5. | Mina Schütz; Alexander Schindler; Melanie Siegel; Kawa Nazemi Automatic Fake News Detection with Pre-trained Transformer Models Konferenzbeitrag In: Alberto Del Bimbo; Rita Cucchiara; Stan Sclaroff; Giovanni Maria Farinella; Tao Mei; Marco Bertini; Hugo Jair Escalante; Roberto Vezzani (Hrsg.): Pattern Recognition. ICPR International Workshops and Challenges, S. 627–641, Springer International Publishing, Cham, 2021, ISBN: 978-3-030-68787-8. @inproceedings{10.1007/978-3-030-68787-8_45,
title = {Automatic Fake News Detection with Pre-trained Transformer Models},
author = {Mina Schütz and Alexander Schindler and Melanie Siegel and Kawa Nazemi},
editor = {Alberto Del Bimbo and Rita Cucchiara and Stan Sclaroff and Giovanni Maria Farinella and Tao Mei and Marco Bertini and Hugo Jair Escalante and Roberto Vezzani},
doi = {10.1007/978-3-030-68787-8_45},
isbn = {978-3-030-68787-8},
year = {2021},
date = {2021-02-21},
urldate = {2021-02-21},
booktitle = {Pattern Recognition. ICPR International Workshops and Challenges},
pages = {627--641},
publisher = {Springer International Publishing},
address = {Cham},
abstract = {The automatic detection of disinformation and misinformation has gained attention during the last years, since fake news has a critical impact on democracy, society, and journalism and digital literacy. In this paper, we present a binary content-based classification approach for detecting fake news automatically, with several recently published pre-trained language models based on the Transformer architecture. The experiments were conducted on the FakeNewsNet dataset with XLNet, BERT, RoBERTa, DistilBERT, and ALBERT and various combinations of hyperparameters. Different preprocessing steps were carried out with only using the body text, the titles and a concatenation of both. It is concluded that Transformers are a promising approach to detect fake news, since they achieve notable results, even without using a large dataset. Our main contribution is the enhancement of fake news' detection accuracy through different models and parametrizations with a reproducible result examination through the conducted experiments. The evaluation shows that already short texts are enough to attain 85% accuracy on the test set. Using the body text and a concatenation of both reach up to 87% accuracy. Lastly, we show that various preprocessing steps, such as removing outliers, do not have a significant impact on the models prediction output.},
keywords = {Artificial Intelligence, Data Analytics, Data Mining, Fake News, maschine learning, Transformer},
pubstate = {published},
tppubtype = {inproceedings}
}
The automatic detection of disinformation and misinformation has gained attention during the last years, since fake news has a critical impact on democracy, society, and journalism and digital literacy. In this paper, we present a binary content-based classification approach for detecting fake news automatically, with several recently published pre-trained language models based on the Transformer architecture. The experiments were conducted on the FakeNewsNet dataset with XLNet, BERT, RoBERTa, DistilBERT, and ALBERT and various combinations of hyperparameters. Different preprocessing steps were carried out with only using the body text, the titles and a concatenation of both. It is concluded that Transformers are a promising approach to detect fake news, since they achieve notable results, even without using a large dataset. Our main contribution is the enhancement of fake news' detection accuracy through different models and parametrizations with a reproducible result examination through the conducted experiments. The evaluation shows that already short texts are enough to attain 85% accuracy on the test set. Using the body text and a concatenation of both reach up to 87% accuracy. Lastly, we show that various preprocessing steps, such as removing outliers, do not have a significant impact on the models prediction output. |
4. | Midhad Blazevic; Lennart B. Sina; Dirk Burkhardt; Melanie Siegel; Kawa Nazemi Visual Analytics and Similarity Search - Interest-based Similarity Search in Scientific Data Konferenzbeitrag In: 2021 25th International Conference Information Visualisation (IV), S. 211-217, IEEE, 2021. @inproceedings{9582711,
title = {Visual Analytics and Similarity Search - Interest-based Similarity Search in Scientific Data},
author = {Midhad Blazevic and Lennart B. Sina and Dirk Burkhardt and Melanie Siegel and Kawa Nazemi},
doi = {10.1109/IV53921.2021.00041},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
booktitle = {2021 25th International Conference Information Visualisation (IV)},
pages = {211-217},
publisher = {IEEE},
abstract = {Visual Analytics enables solving complex analytical tasks by coupling interactive visualizations and machine learning approaches. Besides the analytical reasoning enabled through Visual Analytics, the exploration of data plays an essential role. The exploration process can be supported through similarity-based approaches that enable finding similar data to those annotated in the context of visual exploration. We propose in this paper a process of annotation in the context of exploration that leads to labeled vectors-of-interest and enables finding similar publications based on interest vectors. The generation and labeling of the interest vectors are performed automatically by the Visual Analytics system and lead to finding similar papers and categorizing the annotated papers. With this approach, we provide a categorized similarity search based on an automatically labeled interest matrix in Visual Analytics.},
keywords = {Artificial Intelligence, Collaboration, Collaborative Systems, Information visualization, Similarity, Visual analytics},
pubstate = {published},
tppubtype = {inproceedings}
}
Visual Analytics enables solving complex analytical tasks by coupling interactive visualizations and machine learning approaches. Besides the analytical reasoning enabled through Visual Analytics, the exploration of data plays an essential role. The exploration process can be supported through similarity-based approaches that enable finding similar data to those annotated in the context of visual exploration. We propose in this paper a process of annotation in the context of exploration that leads to labeled vectors-of-interest and enables finding similar publications based on interest vectors. The generation and labeling of the interest vectors are performed automatically by the Visual Analytics system and lead to finding similar papers and categorizing the annotated papers. With this approach, we provide a categorized similarity search based on an automatically labeled interest matrix in Visual Analytics. |
2019 |
3. | Kawa Nazemi; Dirk Burkhardt A Visual Analytics Approach for Analyzing Technological Trends in Technology and Innovation Management Konferenzbeitrag In: George Bebis; Richard Boyle; Bahram Parvin; Darko Koracin; Daniela Ushizima; Sek Chai; Shinjiro Sueda; Xin Lin; Aidong Lu; Daniel Thalmann; Chaoli Wang; Panpan Xu (Hrsg.): Advances in Visual Computing, S. 283–294, Springer International Publishing, Cham, 2019, ISBN: 978-3-030-33723-0. @inproceedings{Nazemi_ISVC2019,
title = {A Visual Analytics Approach for Analyzing Technological Trends in Technology and Innovation Management},
author = {Kawa Nazemi and Dirk Burkhardt},
editor = {George Bebis and Richard Boyle and Bahram Parvin and Darko Koracin and Daniela Ushizima and Sek Chai and Shinjiro Sueda and Xin Lin and Aidong Lu and Daniel Thalmann and Chaoli Wang and Panpan Xu},
url = {https://rd.springer.com/chapter/10.1007/978-3-030-33723-0_23, Springer LNCS
https://dx.doi.org/10.5281/zenodo.3473065, doi:10.5281/zenodo.3473065 (Poster)},
doi = {10.1007/978-3-030-33723-0_23},
isbn = {978-3-030-33723-0},
year = {2019},
date = {2019-10-09},
booktitle = {Advances in Visual Computing},
pages = {283--294},
publisher = {Springer International Publishing},
address = {Cham},
abstract = {Visual Analytics provides with a combination of automated techniques and interactive visualizations huge analysis possibilities in technology and innovation management. Thereby not only the use of machine learning data mining methods plays an important role. Due to the high interaction capabilities, it provides a more user-centered approach, where users are able to manipulate the entire analysis process and get the most valuable information. Existing Visual Analytics systems for Trend Analytics and technology and innovation management do not really make use of this unique feature and almost neglect the human in the analysis process. Outcomes from research in information search, information visualization and technology management can lead to more sophisticated Visual Analytics systems that involved the human in the entire analysis process. We propose in this paper a new interaction approach for Visual Analytics in technology and innovation management with a special focus on technological trend analytics.},
keywords = {Artificial Intelligence, Data Analytics, Human Factors, Human-centered user interfaces, Human-computer interaction (HCI), Information visualization, Intelligent Systems, maschine learning, Visual analytics},
pubstate = {published},
tppubtype = {inproceedings}
}
Visual Analytics provides with a combination of automated techniques and interactive visualizations huge analysis possibilities in technology and innovation management. Thereby not only the use of machine learning data mining methods plays an important role. Due to the high interaction capabilities, it provides a more user-centered approach, where users are able to manipulate the entire analysis process and get the most valuable information. Existing Visual Analytics systems for Trend Analytics and technology and innovation management do not really make use of this unique feature and almost neglect the human in the analysis process. Outcomes from research in information search, information visualization and technology management can lead to more sophisticated Visual Analytics systems that involved the human in the entire analysis process. We propose in this paper a new interaction approach for Visual Analytics in technology and innovation management with a special focus on technological trend analytics. |
2. | Kawa Nazemi; Dirk Burkhardt Visual Analytics for Analyzing Technological Trends from Text Konferenzbeitrag In: 2019 23rd International Conference Information Visualisation (IV), S. 191-200, IEEE, 2019, ISSN: 2375-0138, (Best Paper Award). @inproceedings{Nazemi2019d,
title = {Visual Analytics for Analyzing Technological Trends from Text},
author = {Kawa Nazemi and Dirk Burkhardt},
doi = {10.1109/IV.2019.00041},
issn = {2375-0138},
year = {2019},
date = {2019-07-01},
urldate = {2019-07-01},
booktitle = {2019 23rd International Conference Information Visualisation (IV)},
pages = {191-200},
publisher = {IEEE},
abstract = {The awareness of emerging technologies is essential for strategic decision making in enterprises. Emerging and decreasing technological trends could lead to strengthening the competitiveness and market positioning. The exploration, detection and identification of such trends can be essentially supported through information visualization, trend mining and in particular through the combination of those. Commonly, trends appear first in science and scientific documents. However, those documents do not provide sufficient information for analyzing and identifying emerging trends. It is necessary to enrich data, extract information from the integrated data, measure the gradient of trends over time and provide effective interactive visualizations. We introduce in this paper an approach for integrating, enriching, mining, analyzing, identifying and visualizing emerging trends from scientific documents. Our approach enhances the state of the art in visual trend analytics by investigating the entire analysis process and providing an approach for enabling human to explore undetected potentially emerging trends.},
note = {Best Paper Award},
keywords = {Artificial Intelligence, Data Mining, Data Models, Data Visualization, emerging trend identification, Hidden Markov models, Information visualization, Market research, Patents, Trend Analytics, Visual analytics, visual business analytics, Visualization},
pubstate = {published},
tppubtype = {inproceedings}
}
The awareness of emerging technologies is essential for strategic decision making in enterprises. Emerging and decreasing technological trends could lead to strengthening the competitiveness and market positioning. The exploration, detection and identification of such trends can be essentially supported through information visualization, trend mining and in particular through the combination of those. Commonly, trends appear first in science and scientific documents. However, those documents do not provide sufficient information for analyzing and identifying emerging trends. It is necessary to enrich data, extract information from the integrated data, measure the gradient of trends over time and provide effective interactive visualizations. We introduce in this paper an approach for integrating, enriching, mining, analyzing, identifying and visualizing emerging trends from scientific documents. Our approach enhances the state of the art in visual trend analytics by investigating the entire analysis process and providing an approach for enabling human to explore undetected potentially emerging trends. |
2014 |
1. | Peter Sonntagbauer; Kawa Nazemi; Susanne Sonntagbauer; Giorgio Prister; Dirk Burkhardt (Hrsg.) Handbook of Research on Advanced ICT Integration for Governance and Policy Modeling Buch Business Science Reference (IGI Global), Hershey PA, USA, Hershey PA, USA, 2014, ISBN: 978-1-466-66236-0. @book{Sonntagbauer2014,
title = {Handbook of Research on Advanced ICT Integration for Governance and Policy Modeling},
editor = {Peter Sonntagbauer and Kawa Nazemi and Susanne Sonntagbauer and Giorgio Prister and Dirk Burkhardt},
url = {https://www.igi-global.com/book/handbook-research-advanced-ict-integration/102238, link to publisher},
doi = {10.4018/978-1-4666-6236-0},
isbn = {978-1-466-66236-0},
year = {2014},
date = {2014-06-01},
pages = {508},
publisher = {Business Science Reference (IGI Global), Hershey PA, USA},
address = {Hershey PA, USA},
series = {Handbook of Research},
abstract = {As governments and policy makers take advantage of information and communication technologies, leaders must understand how to navigate the ever-shifting landscape of modern technologies in order to be most effective in enacting change and leading their constituents.
The Handbook of Research on Advanced ICT Integration for Governance and Policy Modeling builds on the available literature, research, and recent advances in e-governance to explore advanced methods and applications of digital tools in government. This collection of the latest research in the field presents an essential reference for academics, researchers, and advanced-level students, as well as government leaders, policy makers, and experts in international relations.
Reviews and Testimonials
Sonntagbauer, Nazemi, Sonntagbauer, Prister, and Burhardt present an essential reference text for advanced students, academics, government leaders, policy makers, experts, and researchers in the field of international relations on the subject of e-governance and the advanced methods and applications of digital tools in government. Utilizing the latest available literature and research into recent advances in the field of e-governance, the text explores citizen engagement, civil service, decision-making strategies, e-participation modeling and a variety of other subjects as they pertain to the overall topic.},
keywords = {Artificial Intelligence, eGovernance, Information visualization, Interaction Design, Machine Leanring, Policy modeling},
pubstate = {published},
tppubtype = {book}
}
As governments and policy makers take advantage of information and communication technologies, leaders must understand how to navigate the ever-shifting landscape of modern technologies in order to be most effective in enacting change and leading their constituents. The Handbook of Research on Advanced ICT Integration for Governance and Policy Modeling builds on the available literature, research, and recent advances in e-governance to explore advanced methods and applications of digital tools in government. This collection of the latest research in the field presents an essential reference for academics, researchers, and advanced-level students, as well as government leaders, policy makers, and experts in international relations. Reviews and Testimonials Sonntagbauer, Nazemi, Sonntagbauer, Prister, and Burhardt present an essential reference text for advanced students, academics, government leaders, policy makers, experts, and researchers in the field of international relations on the subject of e-governance and the advanced methods and applications of digital tools in government. Utilizing the latest available literature and research into recent advances in the field of e-governance, the text explores citizen engagement, civil service, decision-making strategies, e-participation modeling and a variety of other subjects as they pertain to the overall topic. |